
Python data aggregation and packet operations

(1) -groupby mechanics

Foreword

Python's PANDAS package is very powerful and flexible.《Python for Data Analysis》This book

is detailed in detail in detail, but some details are not common to forget, and intend to summarize

this part of this part in the blog to review. According to the chapters in the book, this part of this

knowledge includes the following four parts:

1.Groupby Mechanics (GroupBY technology)

2.Data aggregation (data aggregation)

3.Group-Wise Operation and Transformation (Group-level operation and conversion)

4.PIVOT TABLES AND CROSS-Tabulation (Pivotive and Crosslist)

This article is the first part, introducing GROUPBY technology.

First, the packet principle

core:

1. Regardless of the grouping keys, lists,

dictionaries, Series, which can be grouped to

grouch as long as they are consistent with the shaft

length of the group variable.

2. Default AXIS = 0 Packet by line, specify the AXIS =

1 pair of column packets.

The process of packet operations for data can be summarized as: split-appl- combine three

steps:

http://shop.oreilly.com/product/0636920023784.do

1. Packet data by key (key) or packet variable.

2. For each group to apply our functions, this step is very flexible, which can be a Python's own

function, which can be the function we have written by it.

3. Aggregate the result after the function calculates.

Figure 1: Packet polymerization principle (picture from "Python for Data Analysis" p

import pandas as pd

importnumpy as np

df= pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],

'key2' : ['one', 'two', 'one', 'two', 'one'],

'data1' :np.random.randn(5),
'data2' :np.random.randn(5)})

We use Key1 as our packet key value, packet DATA1, and then ask for average of each group:

grouped = df['data1'].groupby(df['key1'])

https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204005167-1937788854.png
javascript:void(0);
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204008683-771439563.png

The syntax is very simple, but here you need to pay attention to the data type of GroupD, it is not

a data box, but a Groupby object.

grouped

In fact, in this step, we don't have any calculations just create a GroupBy object after creating a

key1 group, and any of our follow-up function is based on this object.

Ask average:

grouped.mean()

Just, we just used key1 to group, we can also use two packet variables, and resolve through the

UNSTACK method:

means = df['data1'].groupby([df['key1'], df['key2']]).mean()

means

means.unstack

The above our grouping variables are series inside the DF, in fact, as long as the key1 is long,

can:

states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])

years= np.array([2005, 2005, 2006, 2005, 2006])

df['data1'].groupby([states, years]).mean()

Second, iterates the group

https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204013058-1119779294.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204019730-924519646.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204025870-1557330047.png

The GroupBy object supports iterative operations, which generates a binary group consisting of

packet variable names and data blocks:

for name, group indf.groupby('key1'):

print name

print group

If the packet variables are two:

for (k1,k2), group indf.groupby(['key1','key2']):

print k1,k2

print group

We can translate the above results to List or Dict to see what the results are:

list(df.groupby(['key1','key2']))

https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204029339-890195026.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204031792-1430376656.png

I don't know clearly, let's take a look at the first element of this list:

list(df.groupby(['key1','key2']))[0]

Similarly, we can also convert the results to a DICT (Dictionary):

dict(list(df.groupby(['key1','key2'])))

dict(list(df.groupby(['key1','key2'])))[('a','one')]

All above is based on row, because the groupBY is grouped by default, we can specify the AXIS

= 1 direction (column direction) to group:

grouped=df.groupby(df.dtypes,axis=1)

list(grouped)[0]

https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204034636-543521423.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204101886-665413810.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204105089-1565126310.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204108230-538757603.png

dict(list(grouped))

note,

'''The following two statement functions are the same'''

df.groupby('key1')['data1']

df.data1.groupby(df.key1)

Third, group through the dictionary

people = pd.DataFrame(np.random.randn(5, 5),

columns=['a', 'b', 'c', 'd', 'e'],

index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
people.ix[2:3, ['b', 'c']] = np.nan# Add missing value

people

If we want to get aggregated by column, what should I do?

Based on the actual situation, we have established a dictionary according to the actual situation,

then incorporate this dictionary to GroupBy, remember to specify axis = 1, because we are

packet aggregation:

mapping = {'a': 'red', 'b': 'red', 'c': 'blue',

'd': 'blue', 'e': 'red', 'f' :'orange'}

by_columns=people.groupby(mapping,axis=1)

by_columns.mean()

javascript:void(0);
javascript:void(0);
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204113495-1133503360.png
https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204117277-565400895.png

Since we can group columns by incoming a dictionary, you can also group columns by passing

Series (INDEX in Series is a key in the dictionary):

map_series =pd.Series(mapping)

people.groupby(map_series,axis=1).count()

Fourth, group through functions

When we grouped, Dict and Series were used to build a map. For some complex demands, we

can directly transfer the function names to the GroupBy function to group, take the PEOPLE data

as an example, if we want to group, groups of key is How do you do the letter length of each

person? Compare the direct ideas are to find a length relative to each name, establish an array,

then incorporate this array to GroupBy, let's test:

l=[len(x) for x inpeople.index]

people.groupby(l).count()

The program is feasible, then there is a faster and more beautiful way? Of course, we only need

to pass the name of the Len to GroupBY:

people.groupby(len).count()

In addition to transfer functions, we can also use functions and dict, series, array. After all, it will

be allocated to arrays:

key_list = ['one', 'one', 'one', 'two', 'two']

people.groupby([len, key_list]).min()

V, group according to the index level

https://images2015.cnblogs.com/blog/804827/201707/804827-20170721204120417-962500275.png

Just one level, only one level, when the data has multi-level index, you can specify the index we

want to group via Level, pay attention to use axis = 1 to repay:

columns = pd.MultiIndex.from_arrays([['Asian', 'Asian', 'Asian', 'America', 'America'],

 ['China','Japan','Singapore','UnitedStates','Canada']], names=['continent', 'country'])
hier_df= pd.DataFrame(np.random.randn(4, 5), columns=columns)

hier_df

	Python data aggregation and packet operations (1) -groupby mechanics
	Foreword
	First, the packet principle
	Second, iterates the group
	Third, group through the dictionary
	Fourth, group through functions
	V, group according to the index level

