

 1

MODULE-4

PYTHON CONCEPTS AND DATANWRANGLING

Data Structure
Data structures are fundamental concepts of computer science which helps is writing efficient

programs in any language. Python is a high-level, interpreted, interactive and object-oriented

scripting language using which we can study the fundamentals of data structure in a simpler

way as compared to other programming languages.

In this chapter we are going to study a short overview of some frequently used data structures

in general and how they are related to some specific python data types. There are also some

data structures specific to python which is listed as another category.
Liner Data Structures

These are the data structures which store the data elements in a sequential manner.

 Array − It is a sequential arrangement of data elements paired with the index of the

data element.

 Linked List − Each data element contains a link to another element along with the

data present in it.

 Stack − It is a data structure which follows only to specific order of operation.

LIFO(last in First Out) or FILO(First in Last Out).

 Queue − It is similar to Stack but the order of operation is only FIFO(First In First

Out).

 Matrix − It is two dimensional data structure in which the data element is referred by

a pair of indices.

Non-Liner Data Structures

These are the data structures in which there is no sequential linking of data elements. Any

pair or group of data elements can be linked to each other and can be accessed without a strict

sequence.

 Binary Tree − It is a data structure where each data element can be connected to

maximum two other data elements and it starts with a root node.

 Heap − It is a special case of Tree data structure where the data in the parent node is

either strictly greater than/ equal to the child nodes or strictly less than it’s child

nodes.

 Hash Table − It is a data structure which is made of arrays associated with each other

using a hash function. It retrieves values using keys rather than index from a data

element.

 Graph − It is an arrangement of vertices and nodes where some of the nodes are

connected to each other through links.

Python Specific Data Structures

These data structures are specific to python language and they give greater flexibility in

storing different types of data and faster processing in python environment.

 List − It is similar to array with the exception that the data elements can be of

different data types. You can have both numeric and string data in a python list.

 Tuple − Tuples are similar to lists but they are immutable which means the values in

a tuple cannot be modified they can only be read.

 Dictionary − The dictionary contains Key-value pairs as its data elements.

 2

Python mode

 THE PYTHON INTERPRETER

The Python programming language was conceived in the late 1980s, and itsimplementation

was started in December 1989 by Guido van Rossum at CWI in theNetherlands as a successor to the

ABC programming language. When he began implementingPython, Guido van Rossum was also

reading the published scripts from “Monty Python’sFlying Circus‖, a BBC comedy series from the

1970s. Van Rossum thought he needed aname that was short, unique, and slightly mysterious, so he

decided to call the languagePython.

Python is a cross-platform programming language, meaning, it runs onmultiple platforms like

Windows, Mac OS X, Linux, Unix and has even been ported to theJava and .NET virtual machines. It

is free and open source.

 Starting the Interpreter

The Python interpreter is a program that reads and executes Python code.

Even though most of today’s Linux and Mac have Python preinstalled in it, the version might be out-

of-date. So, it is always a good idea to install the most current version.

 After installation, the python interpreter lives in the installed directory.

By default it is /usr/local/bin/pythonX.X in Linux/Unix and C:\PythonXX in

Windows, where the 'X' denotes the version number. To invoke it from the shell or the command

prompt we need to add this location in the search path.

Search path is a list of directories (locations) where the operating systemsearches for executables.

For example, in Windows command prompt, we can type setpath=%path%;c:\python27 (python27

means version 2.7, it might be different in your case) toadd the location to path for that particular

session. In Mac OS we need not worry about thisas the installer takes care about the search path.

Now there are two ways to start Python.

Figure shows Modes of Python Interpreter

 Script Mode Interactive Mode

 Interactive Mode

Typing python in the command line will invoke the interpreter in interactive mode.

When it starts, you should see output like this:

PYTHON 2.7.13 (V2.7.13:A06454B1AFA1, DEC 17 2016, 20:42:59) [MSC V.1500 32 BIT

(INTEL)] ON WIN32

TYPE "COPYRIGHT", "CREDITS" OR "LICENSE()" FOR MORE INFORMATION.

>>>

The first three lines contain information about the interpreter and the operating system

it’s running on, so it might be different for you. But you should check that the version

number, which is 2.7.13 in this example, begins with 2, which indicates that you are running

 3

Python 2. If it begins with 3, you are running Python 3.

The last line is a prompt that indicates that the interpreter is ready for you to enter code.

If you type a line of code and hit Enter, the interpreter displays the result:

>>> 5 + 4

9

This prompt can be used as a calculator. To exit this mode type exit() or quit() and press

enter.

 Script Mode

This mode is used to execute Python program written in a file. Such a file is calleda script.

Scripts can be saved to disk for future use. Python scripts have the extension .py,meaning that the

filename ends with .py.

For example: helloWorld.py

To execute this file in script mode we simply write python helloWorld.py at thecommand

prompt.

 Integrated Development Environment (IDE)

We can use any text editing software to write a Python script file.

We just need to save it with the .py extension. But using an IDE can make our life a lot

easier. IDE is a piece of software that provides useful features like code hinting, syntax

highlighting and checking, file explorers etc. to the programmer for application development.

Using an IDE can get rid of redundant tasks and significantly decrease the time required for

application development.

IDEL is a graphical user interface (GUI) that can be installed along with the Python

programming language and is available from the official website.

We can also use other commercial or free IDE according to our preference. PyScripter IDE is

one of the Open source IDE.

 Hello World Example

Now that we have Python up and running, we can continue on to write our first Python

program.

Type the following code in any text editor or an IDE and save it as helloWorld.py

print("Hello world!")

Now at the command window, go to the loaction of this file. You can use the cd command to

change directory.

To run the script, type, python helloWorld.py in the command window. We should be able to

see the output as follows:

Hello world!

If you are using PyScripter, there is a green arrow button on top. Press that button orpress Ctrl+F9 on

your keyboard to run the program.

In this program we have used the built-in function print(), to print out a string to thescreen. String is

the value inside the quotation marks, i.e. Hello world!.

 4

VALUES AND TYPES

A value is one of the basic things a program works with, like a letter or a number. Some example

values are 5, 83.0, and 'Hello, World!'. These values belong to different types: 5 is an integer, 83.0 is a

floating-point number, and 'Hello, World!' is a string, so-called because the letters it contains are

strung together. If you are not sure what type a value has, the interpreter can tell you:

>>>type(5)

<class 'int'>

>>>type(83.0)

<class 'float'>

>>>type('Hello, World!')

<class 'str'>

In these results, the word ―class‖ is used in the sense of a category; a type is a category of values. Not

surprisingly, integers belong to the type int, strings belong to str and floating-point numbers belong to

float. What about values like '5' and '83.0'? They look like numbers, but they are in quotation marks

like strings.

>>>type('5')

<class 'str'>

>>>type('83.0')

<class 'str'>

They’re strings. When you type a large integer, you might be tempted to use commas between groups

of digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> 1,000,000

 (1, 0, 0)

That’s not what we expected at all! Python interprets 1,000,000 as a comma-separated sequence of

integers. We’ll learn more about this kind of sequence late.

Standard Data Types

Python has various standard data types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types –

 Numbers

 String

 List

 Tuple

 Dictionary

Python Number

Number data types store numeric value Number objects are created when you assign a value to then

for example-

Var1=0

Var2=10

You can also delete the reference to a number object by using the del statement.

The syntax of the del statement is-

Del var1[var2[var[var3[….,varN]]]]

You can delete a single object or multiple objects by using the del statement .for example-

 5

delvar

delvar_a,var_b

python support four different numerical types-

 int(signed integers)

 long(long integers they can also be represented in octal and hexadecimal)

 float(floating point real values)

 complex(complex numbers)

Examples

Here are some examples of numbers-

Int Long Float complex

10 51924361L 0.0 3.14J

100 -0x19323L 15.20 45J

-786 0122L -21.9 9.322e-36J

080 OxDEFABCECBDAECBFBAEI 32.+e18 .876J

-0490 535633629843l -90 -6545+0J

-0x260 -052318172735L -32,54e100 3e+26J

Ox69 -4721885298529l 70.2.E12 4,53e-7J

 Python allows you to use a lowercase l with long, but it is recommended that you use only an

uppercase L to avoid confusion with the number 1. Python displays long integers with an uppercase L.

A complex number consists of an ordered pair of real floating-point numbers denoted by x + yj, where

x and y are the real numbers and j is the imaginary unit.

Python StringsStrings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes. Subsets of strings can be

taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of the string and

working their way from -1 at the end.

 The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition operator.

For example –

str = 'Python Programming'

printstr # Prints complete string

printstr[0] # Prints first character of the string

printstr[-1] # Prints last character of the string

printstr[2:5] # Prints characters starting from 3rd to 5th

printstr[2:] # Prints string starting from 3rd character

printstr * 2 # Prints string two times

printstr + " Course" # Prints concatenated string

This will produce the following result –

Python Programming

P

G

tho

thon Programming

Python ProgrammingPython Programming

Python Programming Course

 Python ListsLists are the most versatile of Python's compound data types. A list contains items

separated by commas and enclosed within square brackets ([]). To some extent, lists are similar

to arrays in C. One difference between them is that all the items belonging to a list can be of different

data type.

 6

 The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes starting

at 0 in the beginning of the list and working their way to end -1.

 The plus (+) sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

 For example −

list = ['Hai', 123 , 1.75, 'vinu', 100.25]

smalllist = [251, 'vinu']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[-1] # Prints last element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

printsmalllist * 2 # Prints list two times

This produces the following result –

['Hai', 123, 1.75, 'vinu’,100.25]

Hai

100.25

 [123, 1.75]

 [1.75, 'vinu', 100.25]

 [251, 'vinu', 251, 'vinu']

 ['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

Python Bolean

 A Boolean type was added to Python 2.3. Two new constants were added to the __builtin__ module,

True and False. True and False are simply set to integer values of 1 and 0 and aren't a different type.

The type object for this new type is named bool; the constructor for it takes any Python value and

converts it to True or False.

>>>bool(1)

 True

>>>bool(0) False

 Python's Booleans were added with the primary goal of making code clearer. For example, if you're

reading a function and encounter the statement return 1, you might wonder whether the 1 represents a

Boolean truth value, an index, or a coefficient that multiplies some other quantity. If the statement is

return True, however, the meaning of the return value is quite clear.

 Python's Booleans were not added for the sake of strict type-checking. A very strict language such as

Pascal would also prevent you performing arithmetic with Booleans, and would require that the

expression in an if statement always evaluate to a Boolean result. Python is not this strict and never

will be. This means you can still use any expression in an if statement, even ones that evaluate to a list

or tuple or some random object. The Boolean type is a subclass of the int class so that arithmetic using

a Boolean still works.

>>>True+1

2

>>>False+1

1

>>>False*85

87

>>>True+True

2

>>>False+False

 7

0

 Data type conversion

Sometime, you may need to perform conversions between the built –in types.

To convert between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another .These

functions return a new object representing the converted value.

Table: Data type conversion

Function description

int(x,[,base]) Converts x to an integer base specifies the base if

x is a string

long(x[,base]) Converts x to a long integer base specifies the if x

is a string

float(x) Converts x to a floating point number

complex(real[,image]) Creates a complex number

str(x) Converts object x to a string representation

repr(x) Converts object x to an expression string

eval(x) Evaluates a string and returns an object

list(s) Converts to a list

char(x) Converts an integer to a character

unichar(x) Converts an integer to a Unicode character

ord(x) Converts a single character to its integer value

hex(x) Converts an integer to a hexadecimal string

oct(x) Converts an integer to an octal string

Variables

A variable is a name that refers to a value. Variable reserved memory location to store value. This

means that when you create a variable you reserve some space in memory. Based on the data type of a

variable, the interpreter allocates memory and decides what can be stored in the reserved memory.

Assignment statements

An assignment statement creates a new variable and gives it a value:

>>>message= ‘introducing python variable’

>>>num=15

>>>radius=5.4

This example makes three assignments.The first assigns a string to a new variable named message the

second gives the integer 15 to num the third assigns floating point value 5.4 to variable radius.

Variable names

Programmers generally choose names for their variables that are meaningful

The rules

Variable names must start with a letter or an underscore such as

 _mark

 mark_

The remainder of your variable name may consist of letters,numbers and underscores

 subject1

 my2ndsubject

 un_der_scores

Names are case sensitive.

 case_sensitive, CASE_SENSITIVE. and Case_Sensitive are each a different variable

can be any(reasonable)length

 8

There are some reserved(key words)words which you cannot use as a variable name because python

uses for other things

The interpreter uses keywords to recognize the structure of the program and they cannot be used as

variable names.

Python 3 has these keywords:

False, class, finally, is, return, one, pass, break, except, with, as ,del, non, local, if,

Continue, for, lambda, try, true, def, from, not, while etc.,

 You don’t have to memorize this list.In most development enivironments,keywords are displayed in a

different colour;if you try to use one as a variable name,you ‘ll know.

If you give a variable an illegal name,you get a syntax error:

>>Ibook=’python’

syntaxError:invalid syntax

>>>more@=1000000

syntaxError:invalidsyntax

ibook is illegal because it begins with a number.more@is illegal because it contains an illegal

character, @class is illegal because it is keyword

Good Variable Name

 Choose meaningful name instead of short name. roll_no is better than rn.
 Maintain the length of a variable name. Roll_no_of_a_student is too long?

 Be consistent; roll_no or orRollNo

 Begin a variable name with an underscore(_) character for a special case.

 EXPRESSIONS AND STATEMENTS
An expression is a combination of values, variables, and operators. A value

all by itself is considered an expression, and so is a variable, so the following are all legal

expressions:
>>> 50

50

>>>10<5

False

>>>50+20

70

When you type an expression at the prompt, the interpreter evaluates it , which means that it finds the

value of the expression

A statement is a unit of code that has an effect, like creating a variable or displaying a value.

>>>n=25

>>>print(n)

The first line is an assignment statement that gives a value to n .The second line is a print statement

that displays the value of n. when you type a statement, the interpreter executes it, which means that it

does whatever the statement says. In general, statements don’t have values.

EXPRESSIONS AND STATEMENTS

 An expression is a combination of values, variables, and operators. A value all by itself is considered

an expression, and so is a variable, so the following are all legal expressions: >>> 50 50

>>> 10<5

 False

>>> 50+20

 70

When you type an expression at the prompt, the interpreter evaluates it, which means that it finds the

value of the expression.

mailto:number.more@is

 9

 A statement is a unit of code that has an effect, like creating a variable or displaying a value.

>>> n = 25

>>>print(n)

The first line is an assignment statement that gives a value to n. The second line is a print

statement that displays the value of n. When you type a statement, the interpreter executes it, which

means that it does whatever the statement says. In general, statements don’t have values.

Difference Between a Statement and an Expression

 A statement is a complete line of code that performs some action, while an expression is any

section of the code that evaluates to a value. Expressions can be combined ―horizontally‖ into larger

expressions using operators, while statements can only be combined ―vertically‖ by writing one after

another, or with block constructs. Every expression can be used as a statement, but most statements

cannot be used as expressions.

OPERATORS

 In this section, you'll learn everything about different types of operators in Python, their

syntax and how to use them with examples.

 Operators are special symbols in Python that carry out computation. The value that the

operator operates on is called the operand.

For example:

>>>10+5

15 Here, + is the operator that performs addition. 10 and 5 are the operands and 15 is the

output of the operation.

Python has a number of operators which are classified below.

 Arithmetic operators

 Comparison (Relational) operators

 Logical (Boolean) operators

 Bitwise operators

 Assignment operators

 Special operators

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,

multiplication etc.

Table : Arithmetic operators in Python

operator Meaning examp

le

+

Add two

operands or unary plus

X +

y+2

-

Sub right operand

from the left or unary minus

x-y-2

*

Multiply two

operands

X*y

/

Divide left

operand by the right one

(always results into float)

x/y

%

Modulus –

remainder of the division of

left operand by the right

X%

y(remainder of

x/y)

/ Floor division- X//y

 10

/ division that results into

whole number adjusted to

the left in the number line

** Exponent-left

operand raised to the power

of right

X**y(x

to the power y)

Example:

• Print(‘x –y=‘,x – y)

• X=7

• Y=3

• Print(‘x +y= ‘,x + y)

• Print(‘x *y=‘,x*y)

• Print(‘x/y=‘,x/y)

• Print(‘x//y=‘,x//Y)

• Print(‘x% y=‘,x%y)

• Print(‘x**y=‘,x**y)

When you run the program the out put will be

X+y=10

X-y=4

X*y=21

x/y=2.33333333335

X//y=2

X%y=1

X**y=343

Comparison (Relational) operators

Comparison operators are used to

compare values its returns as true or false

Operator Meaning example

> Greater that-true if left operand is greater

than the right
X>y

< Less that –true if left operand is less than

the right
X<y

== Equal to –true if both operands are equal X==y

!= Not equal to –true if operands are not equal X!=y

>= Greater than or equal to- true if left operand

is greater than or equal
X>=y

<= Less than or equal to –true if left operand is

less than or equal to the right
X<=y

 11

Example

• X=5

• Y=7

• Print(‘x>y is ‘,x>y)

• Print(‘x<y is ‘,x<y)

• Print(‘x==y is ‘,x==)

• Print(‘x ! =y is ’, x!=y)

• Print(‘x>=y is ‘, x>=y)

• Print(‘x<=y is ‘,x<=y)

When you run the program the output will be

• X>y is false

• X<y is true

• X ==y is false

• X ! =y is false

• X >= y is false

• X<=y is true

Logical operators

Logical operators are the and, or not operators

Operator meaning example

And True if both operands are

true
 x and y

Or True if either of the

operands is true
x or y

Not True if operand is false Not y

Example

• X=True

• y = False

• print('x and y is',x and y)

• print('x or y is',x or y)

• print('not x is',not x)

When you run the program, the output will be:

• x and y is False

• x or y is True

• not x is False

BITWISE OPERATORS

• Bitwise operators act on operands as if they were string of binary digits. it operates bit by bit,

hence the name

• For example 2is 10 in binary and 7 is 111

• Let x=10 (0000 1010 in binary)and y= 4 (0000 0100 in binary)

 12

Operator Meaning example

& Bitwise AND X&y =0(0000 0000)

| Bitwise OR X} Y=14(0000 1110)

~ Bitwise NOT ~x=-11(1111 0101)

^ Bitwise XOR X^ Y=14(0000 1110)

>> Bitwise right shift X>> 2=2(0000 0010)

<< Bitwise left shift X<< 2=40 (0010

1000)

Example

• x=10

• y=4

• print('x& y=',x& y)

• print('x | y=',x | y)

• print('~x=',~x)

• print('x ^ y=',x ^ y)

• print('x>> 2=',x>> 2)

• print('x<< 2=',x<< 2)

When you run the program, the output will be:

• x& y= 0

• x | y= 14

• ~x= -11

• x ^ y= 14

PRECEDENCE OF PYTHON OPERATORS

The combination of values, variables, operators and function calls is termed as

an expression. Python interpreter can evaluate a valid expression. When an expression
contains more than one operator, the order of evaluation dependson the Precedence of

operations.

For example, multiplication has higher precedence than subtraction.
>>> 20 – 5*3

5

But we can change this order using parentheses () as it has higher precedence.

>>> (20 - 5) *3
45

The operator precedence in Python are listed in the following table. It is in

descending order, upper group has higher precedence than the lower ones.

Operator precedence rule in Python
Operators meaning

() parentheses

** exponent

+x,-x,¬x Unary plus, unary minus ,bitwise not

*,/,//,% Multiplication ,division ,floor division

modulus

+,- Add,sub

<<,>> Bitwise shift operators

 13

& Bitwise AND

^ Bitwise XOR

Pipe Bitwise OR

==,!=,>,>=,<,<=,is ,isnot,in,not in Comparisons, identity, membership

operators

Not Logical NOT

And Logical AND

Or Logical OR

ASSOCIATIVITY OF PYTHON OPERATORS

We can see in the above table that more than one operator exists in the same

group. These operators have the same precedence.
When two operators have the same precedence, associativity helps to

determine which the order of operations.

Associativity is the order in which an expression is evaluated that has multiple
operator of the same precedence. Almost all the operators have left-to-right associativity.

18

For example, multiplication and floor division have the same precedence.
Hence, if both of them are present in an expression, left one is evaluates first.

>>> 10 * 7 // 3

23

>>> 10 * (7//3)
20

>>> (10 * 7)//3

23
We can see that 10 * 7 // 3is equivalent to (10 * 7)//3.

Exponent operator ** has right-to-left associativity in Python.

>>> 5 ** 2 ** 3

390625
>>> (5** 2) **3

15625

>>> 5 **(2 **3)
390625

We can see that 2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).
 Non Associative Operators

Some operators like assignment operators and comparison operators do not
have associativity in Python. There are separate rules for sequences of this kind of operator

and cannot be expressed as associativity.

For example, x < y < z neither means (x < y) < z nor x < (y < z). x < y < z is equivalent to x
< y and y < z, and is evaluates from left-to-right.

Furthermore, while chaining of assignments like x = y = z is perfectly valid, x = y += z will

result into error.
 TUPLE ASSIGNMENT

It is often useful to swap the values of two variables. With conventional

assignments, you have to use a temporary variable. For example, to swap a and b:

>>>temp = a

>>> a = b
>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:

>>>a, b = b, a
The left side is a tuple of variables; the right side is a tuple of expressions.

Each value is assigned to its respective variable. All the expressions on the right side are

evaluated before any of the assignments. The number of variables on the left and the number

of values on the right have to be the same:
>>>a, b = 1, 2, 3

ValueError: too many values to unpack

 14

 More generally, the right side can be any kind of sequence (string, list or tuple). For example, to split
an email address into a user name and a domain, you could write:

 >>>addr = 'monty@python.org'

 >>>uname, domain = addr.split('@')

 The return value from split is a list with two elements; the first element is assigned to uname, the
second to domain.

 >>>uname 'monty'

>>>domain
'python.org'

 COMMENTS
 As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what it is doing,

or why. For this reason, it is a good idea to add notes to your programs to explain in natural language

what the program is doing. These notes are called comments, and they start with the # symbol:

 # compute Area of a triangle using Base and Height area= (base*height)/2
 In this case, the comment appears on a line by itself. You can also put comments at the end

of a line: area= (base*height)/2 # Area of a triangle using Base and Height

 Everything from the # to the end of the line is ignored—it has no effect on the execution of
the program. Comments are most useful when they document non-obvious features of the code. It is

reasonable to assume that the reader can figure out what the code does; it is more useful to explain

why.
 This comment is redundant with the code and useless: base= 5 # assign 5 to base

 This comment contains useful information that is not in the code: base = 5 # base is in

centimetre.

 Good variable names can reduce the need for comments, but long names can make complex
expressions hard to read, so there is a trade off.

 If we have comments that extend multiple lines, one way of doing it is to use hash (#) in the
beginning of each line. For example:

#This is a long comment

 #and it extends
#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

These triple quotes are generally used for multi-line strings. But they can be used as multi- line

comment as well. Unless they are not docstrings, they do not generate any extra code.

"""This is also a

 perfect example of

multi-line comments"""

Docstring in Python
Docstring is short for documentation string. It is a string that occurs as the first statement in a module,

function, class, or method definition. We must write what a function/class does in the docstring.

Triple quotes are used while writing docstrings. For example:

def area(r):

"""Compute the area of Circle"""
return 3.14159*r**2

Docstring is available to us as the attribute __doc__ of the function. Issue the following code in shell

once you run the above program.

>>>print(area.__doc__)
Compute the area of Circle

 15

MODULES AND FUNCTIONS

 Functions

In the context of programming, a function is a named sequence of statements that performs a

computation. When you define a function, you specify the name and the sequence of statements.

Later, you can ―call‖ the function by name. Functions help break our program into smaller and

modular chunks. As our program grows larger and larger, functions make it more organized and

manageable. Furthermore, it avoids repetition and makes code reusable.

Figure shows Types of Functions

Functions can be classified into

 Built-in Functions

 User Defined Functions

 Built-in Functions

The Python interpreter has a number of functions that are always available for use. These

functions are called built-in functions. We have already seen one example of a function call:type()

>>>type(25)

<class ‘int’>

The name of the function is type. The expression in parentheses is called the argument of the function.

The result, for this function, is the type of the argument. It is common to say that a function ―takes‖

an argument and ―returns‖ a result. The resultis also called the return value.

Python provides functions that convert values from one type to another. The int function takes any

value and converts it to an integer, if it can, or complains otherwise: >>>int('25')

25

>>>int('Python')

ValueError: invalid literal for int(): Python

int can convert floating-point values to integers, but it doesn’t round off; it chops off the

fraction part

>>>int(9.999999)

9

>>>int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>>float(25)

25.0

>>>float('3.14159')

3.14159

Finally, str converts its argument to a string:

>>>str(25)

'25'

>>>str(3.14159)

Built in functions User define function

functions

 16

'3.14159'

 range() – function

The range() constructor returns an immutable sequence object of integers between the given start

integer to the stop integer.

Python's range() Parameters

The range() function has two sets of parameters, as follows: range(stop)

 stop: Number of integers (whole numbers) to generate, starting from zero.

eg. range(3) == [0, 1, 2].

range([start], stop[, step])

 start: Starting number of the sequence.

 stop: Generate numbers up to, but not including this number.

 step: Difference between each number in the sequence

 All parameters must be integers.

 All parameters can be positive or negative.

>>>range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>range(5,10)

[5, 6, 7, 8, 9] >>>range(10,1,-2)

[10, 8, 6, 4, 2]

 Printing to the Screen

In python 3, print function will prints as strings everything in a comma- separated sequence of

expressions, and it will separate the results with single blanks by default. Note that you can mix types:

anything that is not already a string is automatically converted to its string representation.

Eg.

>>> x=10

>>> y=7

>>>print('The sum of', x, 'plus', y, 'is', x+y)

The sum of 10 plus 7 is 17 You can also use it with no parameters:

print()

to just advance to the next line.

In python 2, simplest way to produce output is using the print statement where you can pass zero or

more expressions separated by commas. This function converts the expressions you pass into a string

and writes the result to standard output as follows

>>> x=10

>>> y=7

>>>print'The sum of', x, 'plus', y, 'is', x+y

The sum of 10 plus 7 is 17

 Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by default

comes from the keyboard. These functions are −

 raw_input

 input

The raw_input Function The raw_input([prompt]) function reads one line from standard input and

returns it as a string.

>>>str = raw_input("Enter your input: ");

Enter your input: range(0,10)

 17

>>> print "Received input is : ", str

Received input is : range(0,10)

This prompts you to enter any string and it would display same string on the screen.

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a valid

Python expression and returns the evaluated result to you.

>>>str = input("Enter your input: ");

Enter your input: range(0,10)

>>> print "Received input is : ", str

Received input is : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Input data is evaluated and the list is generated

 User-defined functions

As you already know, Python gives you many built-in functions like print(), input(), type() etc. but

you can also create your own functions. These functions are called user-defined functions.

 Function Definition and Use

Syntax of Function definition

def function_name(parameters):

"""docstring"""

statement(s)

Above shown is a function definition which consists of following components.

1. Keyword def marks the start of function header.

2. A function name to uniquely identify it. Function naming follows the same rules of writing

identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must have

same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Example of a function

def welcome(person_name):

"""This function welcome

the person passed in as

parameter"""

print(" Welcome " , person_name , " to Python Function Section")

Using Function or Function Call

Once we have defined a function, we can call it from another function, program or even the

Python prompt. To call a function we simply type the function name with appropriate parameters.

>>> welcome('CSBS')

Welcome CSBS to Python Function Section

The return statement

The return statement is used to exit a function and go back to the place from where it was

called.

Syntax of return

return [expression_list]

 18

This statement can contain expression which gets evaluated and the value is returned. If there

is no expression in the statement or the return statement itself is not present inside a function, then the

function will return the None object.

def absolute_value(num):

"""This function returns the absolute value of the entered number"""

if num >= 0:

return num

else:

return -num

print(absolute_value(5))

print(absolute_value(-7))

When you run the program, the output will be:

5

7

 Flow of Execution

To ensure that a function is defined before its first use, you have to know the order statements

run in, which is called the flow of execution. Execution always begins at the first statement of the

program. Statements are run one at a time, in order from top to bottom. Function definitions do not

alter the flow of execution of the program, but remember that

statements inside the function don’t run until the function is called. A function call is like a

detour in the flow of execution. Instead of going to the next statement, the flow jumps to the body of

the function, runs the statements there, and then comes back to pick up where it left off. Figure shows

the flow of execution

def functionName():

……………………

……………………

………………

………………..

functionName()

…………………..

…………………..

Figure shows Flow of execution when function Call

That sounds simple enough, until you remember that one function can call another. While in

the middle of one function, the program might have to run the statements in another function. Then,

while running that new function, the program might have to run yet another function! Fortunately,

Python is good at keeping track of where it is, so each time a function completes, the program picks

up where it left off in the function that called it. When it gets to the end of the program, it terminates.

In summary, when you read a program, you don’t always want to read from top to bottom.

Sometimes it makes more sense if you follow the flow of execution.

Parameters and Arguments

Some of the functions we have seen require arguments. For example, when you call type()

you pass a variable or value as an argument. Some functions take more than one argument: eg,

range() function take one or two or three arguments.

 19

Inside the function, the arguments are assigned to variables called parameters. Here is a

definition for a function that takes an argument:

def welcome(person_name): print(" Welcome " , person_name , " to Python Function

Section") This function assigns the argument to a parameter named person_name. When the function

is called, it prints the value of the parameter (whatever it is). This function works with any value that

can be printed.

>>> welcome("csbs")

Welcome csbs to Python Function Section

>>> welcome(100)

Welcome 100 to Python Function Section

>>> welcome(50.23)

Welcome 50.23 to Python Function Section

The argument is evaluated before the function is called, so in the below examples the

expressions 'csbs'*3 is evaluated.

>>> welcome('csbs'*3) Welcome csbscsbscsbs to Python Function Section

You can also use a variable as an argument:

>>> student_name='Ranjith'

>>> welcome(student_name)

Welcome Ranjith to Python Function Section

 Function Arguments

You can call a function by using the following types of formal arguments:

 Required arguments

 Default arguments

 Keyword arguments

 Variable-length arguments

Required Arguments

Required arguments are the arguments passed to a function in correct positional order. Here,

the number of arguments in the function call should match exactly with the function definition

def add(a,b):

return a+b

a=10

b=20

print "Sum of ", a ,"and ", b, "is" , add(a,b)

To call the function add(), you definitely need to pass two argument, otherwise it gives a

syntax error as follows

When the above code is executed, it produces the following result: Sum of 10 and 20 is 30

If we miss to give an argument it will show syntax error.

Example

def add(a,b):

return a+b

a=10

b=20

print "Sum of ", a ,"and ", b, "is" , add(a)

It will produce Error message as follows

Sum of 10 and 20 is

Traceback (most recent call last):

File "G:/class/python/code/required_arguments.py", line 5, in <module>

 20

print "Sum of ", a ,"and ", b, "is" , add(a)

TypeError: add() takes exactly 2 arguments (1 given)

Default Arguments

A default argument is an argument that assumes a default value if a value is not provided in

the function call for that argument. The following example gives an idea on default arguments, it add

default value of b if it is not passed while calling.

def add(a,b=0):

print "Sum of ", a ,"and ", b, "is" ,a+b

a=10

b=20

add(a,b)

add(a)

When the above code is executed, it produces the following result:

Sum of 10 and 20 is 30

Sum of 10 and 0 is 10

When default argument is used in program, Non default arguments should come before

default arguments.

Keyword Arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is

able to use the keywords provided to match the values with parameters. You can also make keyword

calls to the add() function in the following ways

def add(a,b):

print "Sum of ", a ,"and ", b, "is" ,a+b

a=10

b=20

add(b=a,a=b)

When the above code is executed, it produces the following result − Sum of 20 and 10 is 30

Variable-Length Arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-length arguments and are not named in the function

definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified during the

function call.

Following is a simple example

def printvalues(arg1, *vartuple):

print "Output is: "

print arg1

for var in vartuple:

print var

 21

printvalues(20)

printvalues(50, 60, 55)

When the above code is executed, it produces the following result:-

Output is:

20

Output is:

50

60

55

 The Anonymous Functions or Lambda Functions

These functions are called anonymous because they are not declared in the standard manner

by using the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the

form of an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function

stack allocation during invocation for performance reasons.

 Syntax

The syntax of lambda functions contains only a single statement, which is as follows

lambda [arg1 [,arg2,.....argn]]:expression

 Following is the example to show how lambda form of function works

sum = lambda a, b: a + b;

 print "Sum is : ", sum(5, 10)

 print "Sum is : ", sum(30, 50)

When the above code is executed, it produces the following result

Sum is: 15

Sum is: 80

 Modules

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a file that contains a collection of

related functions. Python has lot of built-in modules; math module is one of them. math module

provides most of the familiar mathematical functions.

Before we can use the functions in a module, we have to import it with an import statement:

>>> import math

This statement creates a module object named math. If you display the module object, you get

some information about it:

>>> math <module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To access one

of the functions, you have to specify the name of the module and the name of the function, separated

by a dot (also known as a period). This format is called dot notation.

>>> math.log10(200)

2.3010299956639813

>>> math.sqrt(10)

 22

3.1622776601683795

Math module have functions like log(), sqrt(), etc… In order to know what are the functions

available in particular module, we can use dir() function after importing particular module. Similarly

if we want to know detail description about a particular module or function or variable means we can

use help() function.

Eg. >>> import math

>>> dir(math)

['__doc__', '__name__', '__package__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',

'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp',

'fsum', 'gamma', 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'modf', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc'] >>> help(pow)

Help on built-in function pow in module __builtin__:

pow(...)

pow(x, y[, z]) -> number

With two arguments, equivalent to x**y. With three arguments, equivalent to (x**y) % z,

but may be more efficient (e.g. for longs).

 Writing modules

Any file that contains Python code can be imported as a module. For example, suppose you

have a file named addModule.py with the following code:

def add(a, b):

result = a + b

print(result)

add(10,20)

If you run this program, it will add 10 and 20 and print 30. We can import it like this:

>>> import addModule

30

Now you have a module object addModule

>>> addModule

<module 'addModule' from 'G:/class/python/code\addModule.py'>

The module object provides add():

>>> addModule.add(120,150)

270

So that’s how you write modules in Python.

The only problem with this example is that when you import the module it runs the test code

at the bottom. Normally when you import a module, it defines new functions but it doesn’t run them.

Programs that will be imported as modules often use the following idiom: if __name__ ==

'__main__':

add(10,20)

 __name__ is a built-in variable that is set when the program starts. If the program is running

as a script, __name__ has the value '__main__'; in that case, the test code runs. Otherwise, if the

module is being imported, the test code is skipped. Modify addModule.py file as given below.

 def add(a, b):

 result = a + b

 print(result)

 if __name__ == '__main__':

 add(10,20)

 Now while importing addModule test case is not running >>> import addModule

 23

 __name__ has module name as its value when it is imported. Warning: If you import a

module that has already been imported, Python does nothing. It does not re-read the file, even if it has

changed. If you want to reload a module, you can use the built-in function reload, but it can be tricky,

so the safest thing to do is restart the interpreter and then import the module again

 CONDITIONALS

Flow of execution of instruction can be controlled using conditional statements. Conditional

statements have some Boolean expression. Boolean expression can have relational operators or logical

operators or both.

Boolean Expressions

A boolean expression is an expression it’s result is either true or false. The following

examples use the operator ==, which compares two operands and produces True if they are equal and

False otherwise:

>>> 9 == 9

True

>>> 9 == 6

False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

Boolean expression can have relational operators or logical operators. The == operator is one

of the relational operators; the others are:

x==y #x is equal to y

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

More explanation can found in already. Although these operations are probably familiar to

you, the Python symbols are different from the mathematical symbols. A common error is to use a

single equal sign (=) instead of a double equal sign (==). Remember that = is an assignment operator

and == is a relational operator. There is no such thing as =< or =>.

Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these operators

is similar to their meaning in English.

For example

x> 0 and x < 10 is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either or both of the conditions is true, that is, if the number

is divisible by 2 or 3.

not operator negates a boolean expression, so not (x > y) is true if x > y is false, that is, if x is

less than or equal to y.

Note:- Any nonzero number is interpreted as True

>>>95 and True True >>>mark=95 >>>mark>0 and mark<=100 True >>> mark=102 >>>

mark>0 and mark<=100 False

 SELECTION

 24

 You were introduced to the concept of flow of control: the sequence of statements that the

computer executes. In procedurally written code, the computer usually executes instructions in the

order that they appear. However, this is not always the case. One of the ways in which programmers

can change the flow of control is the use of selection control statements.

 Now we will learn about selection statements, which allow a program to choose when to

execute certain instructions. For example, a program might choose how to proceed on the basis of the

user’s input. As you will be able to see, such statements make a program more versatile.

In python selection can be achieved through

 if statement

 The elif Statement

 if...elif...else

 Nested if statements

Conditional Execution

 In order to write useful programs, we almost always need the ability to check conditions and

change the behaviour of the program accordingly. Selection or Conditional statements give us this

ability. The simplest form is the if statement:

General Syntax of if statement is

if TEST EXPRESSION:

 STATEMENT(S) # executed if condition evaluates to True

 Here, the program evaluates the TEST EXPRESSION and will execute statement(s) only if

the text expression is True. If the text expression is False, the statement(s) is not executed.

A few important things to note about if statements:

1The colon (:) is significant and required. It separates the header of the compound statement

from the body.

 2. The line after the colon must be indented. It is standard in Python to use four spaces for

indenting.

 3. All lines indented the same amount after the colon will be executed whenever the

BOOLEAN_EXPRESSION is true.

 4. Python interprets non-zero values as True. None and 0 are interpreted as False.

false

 true

Figure shows if Statement Flowchart

Here is an example:

mark = 102

if mark >= 100:

 print(mark, " is a Not a valid mark.")

 print("This is always printed.")

Test

expression

Body of if

 25

Output will be:

102 is a Not a valid mark.

 This is always printed.

 The boolean expression after the if statement (here mark>=100)is called the condition. If it is

true, then all the indented statements get executed.

There is no limit on the number of statements that can appear in the body, but there has to be

at least one. Occasionally, it is useful to have a body with no statements (usually as a place keeper for

code you haven’t written yet). In that case, you can use the pass statement, which does nothing.

if x < 0:

 pass # TODO: need to handle negative values!

 Alternative execution

 A second form of the if statement is “alternative execution”, in which there are two

possibilities and the condition determines which one runs. In other words , It is frequently the case

that you want one thing to happen when a condition it true, and something else to happen when it is

false. For that we have if else statement. The syntax looks like this:

General Syntax of if .. else statement is

if TEST EXPRESSION:

 STATEMENTS_1 # executed if condition evaluates to True

 else:

 STATEMENTS_2 # executed if condition evaluates to False

 Each statement inside the if block of an if else statement is executed in order if the test

expression evaluates to True. The entire block of statements is skipped if the test expression evaluates

to False, and instead all the statements under the else clause are executed.

false

 true

Figure show if..else Flowchart

 There is no limit on the number of statements that can appear under the two clauses of an if

else statement, but there has to be at least one statement in each block. Occasionally, it is useful to

have a section with no statements, for code you haven’t written yet. In that case, you can use the pass

statement, which does nothing except act as a placeholder.

if True: # This is always true

 pass # so this is always executed, but it does nothing

 else:

 pass

Here is an example:

 age=21 #age=17

Test

expression

Body of if
Body of else

 26

 if age >= 18:

print("Eligible to vote")

 else:

print("Not Eligible to vote")

Output will be:

Eligible to vote

 In the above example, when age is greater than 18, the test expression is true and body of if

is executed and body of else is skipped. If age is less than 18, the test expression is false and body of

else is executed and body of if is skipped. If age is equal to 18, the test expression is true and body of

if is executed and body of else is skipped.

 Chained Conditionals

 Sometimes there are more than two possibilities and we need more than two branches. One

way to express a computation like that is a chained conditional. The syntax looks like this:

General Syntax of if..elif...else statement is

if TEST EXPRESSION1:

 STATEMENTS_A

 elif TEST EXPRESSION2:

 STATEMENTS_B

 else:

 STATEMENTS_C

 The elif is short for else if. It allows us to check for multiple expressions. If the condition for

if is False, it checks the condition of the next elif block and so on. If all the conditions are False, body

of else is executed. Only one block among the several if...elif...else blocks is executed according to

the condition. The if block can have only one else block. But it can have multiple elif blocks

True

False

 True

 True

 Figure show Flowchart of if...elif...else

Each condition is checked in order. If the first is false, the next is checked, and so on. If one

of them is true, the corresponding branch executes, and the statement ends. Even if more than one

condition is true, only the first true branch executes.

Here is an example:

 time=17 #time=10, time=13, time=17, time=22

 if time<12:

Body of if

Test express

of elif

Body of elif
Body of else

Test

expression if

 27

 print("Good Morning")

 elif time<15:

 print("Good Afternoon")

elif time<20:

 print("Good Evening")

else:

 print("Good Night")

Output will be:

Good Evening

When variable time is less than 12, Good Morning is printed. If time is less than 15,

Good Afternoon is printed. If time is less than 20, Good Evening is printed. If all above

conditions fails Good Night is printed.

Nested Conditionals

 One conditional can also be nested within another. ie, We can have a if...elif...else statement

inside another if...elif...else statement. This is called nesting in computer programming.

 Any number of these statements can be nested inside one another. Indentation is the only

way to figure out the level of nesting.

General Syntax of Nested if..else statement is

if TEST EXPRESSION1:

 if TEST EXPRESSION2:

 STATEMENTS_B

 else:

 STATEMENTS_C

 else:

 if TEST EXPRESSION3:

 STATEMENTS_D

 else:

 STATEMENTS_E

 True False

True False True False

Figure show Flowchart of Nested if..else

start

Conditi

on1

Con3 Con2

Statement3

End

Statement1 Statement2
Statement4

 28

 The outer conditional contains two branches. Those two branches contain another if… else

statement, which has two branches of its own. Those two branches could contain conditional

statements as well.

Here is an example:

 a=10

 b=20

 c=5

 if a>b:

 if a>c:

 print("Greatest number is ",a)

 else:

 print("Greatest number is ",c)

 else:

 if b>c:

 print("Greatest number is ",b)

 else:

 print("Greatest number is ",c)

Output will be :

 Greatest number is 20

 Although the indentation of the statements makes the structure apparent, nested conditionals

very quickly become difficult to read. In general, it is a good idea to avoid them when you can.

 Logical operators often provide a way to simplify nested conditional statements. For

example, we can rewrite the above code using single if…elif…. else statement:

 a=10

 b=20

 c=5

 if a>b and a>c:

 print("Greatest number is ",a)

elif b>a and b>c:

 print("Greatest number is ",b)

else:

 print("Greatest number is ",c)

 Another example, we can rewrite the following code using a single conditional:

if 0 < x:

 if x < 10:

 print('x is a positive single-digit number. ')

 The print statement runs only if we make it pass both conditionals, so we can get the same

effect with the and operator:

 if 0 < x and x < 10:

 print('x is a positive single-digit number. ')

 For this kind of condition, Python provides a more concise option:

 if 0 < x < 10:

 print('x is a positive single-digit number. ')

 ITERATION

 Computers are often used to automate repetitive tasks. Repeating identical or similar tasks

without making errors is something that computers do well and people do poorly.

 29

 Repeated execution of a set of statements is called iteration. Python has two statements for

iteration

 for statement

 while statement

Before we look at those, we need to review a few ideas.

Reassignmnent

 As we saw back in the variable section, it is legal to make more than one assignment to the

same variable. A new assignment makes an existing variable refer to a new value (and stop referring

to the old value).

 age = 26

 print(age)

 age = 17

 print(age)

The output of this program is

 26

 17

 because the first time age is printed, its value is 26, and the second time, its value is 17.

Here is what reassignment looks like in a state snapshot:

 Figure show State Diagram for Reassignment

 With reassignment it is especially important to distinguish between an assignment statement

and a boolean expression that tests for equality. Because Python uses the equal token (=) for

assignment, it is tempting to interpret a statement like a = b as a boolean test. Unlike mathematics,

Remember that the Python token for the equality operator is ==.

 Note too that an equality test is symmetric, but assignment is not. For example, if a == 7

then 7 == a. But in Python, the statement a = 7 is legal and 7 = a is not.

 Furthermore, in mathematics, a statement of equality is always true. If a == b now, then a

will always equal b. In Python, an assignment statement can make two variables equal, but because of

the possibility of reassignment, they don’t have to stay that way:

 a = 5

 b = a # after executing this line, a and b are now equal

 a = 3 # after executing this line, a and b are no longer equal

 The third line changes the value of a but does not change the value of b, so they are no

longer equal.

Updating variables

 When an assignment statement is executed, the right-hand-side expression (i.e. the

expression that comes after the assignment token) is evaluated first. Then the result of that evaluation

is written into the variable on the left hand side, thereby changing it.

 One of the most common forms of reassignment is an update, where the new value of the

variable depends on its old value

 n = 5

 n = 3 * n + 1

 26

 Age 17

 27

age

 30

 The second line means “get the current value of n, multiply it by three and add one, and put the

answer back into n as its new value”. So after executing the two lines above, n will have the value 16.

If you try to get the value of a variable that doesn’t exist yet, you’ll get an error:

 >>> x = x + 1

Traceback (most recent call last):

 File "<interactive input>", line 1, in

 NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:

>>> x = 0

>>> x = x + 1

 This second statement — updating a variable by adding 1 to it. It is very common. It is

called an increment of the variable; subtracting 1 is called a decrement.

 The while statement

 The while loop in Python is used to iterate over a block of code as long as the test expression

(condition) is true. We generally use this loop when we don't know beforehand, the number of times

to iterate.

The general syntax for the while statement :

 while TEST_EXPRESSION:

STATEMENTS

 In while loop, test expression is checked first. The body of the loop is entered only if the

TEST_EXPRESSION evaluates to True. After one iteration, the test expression is checked again. This

process continues until the TEST_EXPRESSION evaluates to False.

 In Python, the body of the while loop is determined through indentation. Body starts with

indentation and the first unindented line marks the end.

 Python interprets any non-zero value as True. None and 0 are interpreted as false
 Enter while loop

False

True

 Figure show Flowchart of while Loop

Example:

Python program to find sum of first n numbers using while loop

 n = 20

 sum = 0 # initialize sum and counter

 i = 1

 while i <= n:

 sum = sum + i

 i = i+1 # update counter

 print("The sum is", sum) # print the sum

When you run the program, the output will be:

 The sum is 210

Test

express

on

Body of while

 31

 In the above program, the test expression will be True as long as our counter variable i is

less than or equal to n (20 in our program).

 We need to increase the value of counter variable in the body of the loop. This is very

important (and mostly forgotten). Failing to do so will result in an infinite loop (never ending loop).

Finally the result is displayed.

 The for Statement

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable

objects. Iterating over a sequence is called traversal.

The general syntax for the while statement:

 for LOOP_VARIABLE in SEQUENCE:

 STATEMENTS

 Here, LOOP_VARIABLE is the variable that takes the value of the item inside the sequence

on each iteration.

 Loop continues until we reach the last item in the sequence. The body of for loop is

separated from the rest of the code using indentation.

 for each item in squence

False

No

 Exit loop

Figure show Flowchart of for Loop

Example

 marks = [95,98,89,93,86]

total = 0

 for subject_mark in marks:

 total = total+subject_mark

 print("Total Mark is ", total)

when you run the program, the output will be:

Total Mark is 461

We can use the range() function in for loops to iterate through a sequenc Numbers.

Example:

 sum=0

 for i in range(20):

 sum=sum+i

Last item

reached?

Body of for

 32

Print("Sum is ", sum)

Output will be:

Sum is 190

 Break, Continue, Pass

 You might face a situation in which you need to exit a loop completely when an external

condition is triggered or there may also be a situation when you want to skip a part of the loop and

start next execution.

 Python provides break and continue statements to handle such situations and to have good

control on your loop. This section will discuss the break, continue and pass statements available in

Python.

 The break Statement

 The break statement in Python terminates the current loop and resumes execution at the next

statement. The most common use for break is when some external condition is triggered requiring a

hasty exit from a loop. The break statement can be used in both while and for loops.

Example:

for letter in 'Welcome': # First Example

 if letter == 'c':

 break

print('Current Letter :', letter)

var = 10 # Second Example

while var > 0:

 print('Current variable value :', var)

 var = var -1

 if var == 5:

 break

 print "End!"

This will produce the following output:

Current Letter : W

Current Letter : e

Current Letter : l

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

End!

 The continue Statement: The continue statement in Python returns the control to the beginning of

the while loop. The continue statement rejects all the remaining statements in the current iteration of

the loop and moves the control back to the top of the loop. The continue statement can be used in both

while and for loops.

Example:

for letter in 'Welcome': # First Example

 if letter == 'c':

 continue

 print('Current Letter :', letter)

 var = 10 # Second Example

 while var > 0:

 33

print('Current variable value :', var)

 var = var -1

 if var == 5:

 continue

 print "End!"

This will produce the following output:

Current Letter : W

 Current Letter : e

 Current Letter : l

Current Letter : o

 Current Letter : m

 Current Letter : e

 Current variable value : 10

 Current variable value : 9

 Current variable value : 8

 Current variable value : 7

 Current variable value : 6

Current variable value : 5

Current variable value : 4

 Current variable value : 3

 Current variable value : 2

Current variable value : 1

End!

The else Statement Used with Loops

 Python supports to have an else statement associated with a loop statements.

 If the else statement is used with a for loop, the else statement is executed when the loop has

exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed when the

condition becomes false.

while loop with else

We can have an optional else block with while loop as well. The else part is executed if the condition

in the while loop evaluates to False. The while loop can be terminated with a break statement. In such

case, the else part is ignored. Hence, a while loop's else part runs if no break occurs and the condition

is false.

Here is an example to illustrate this.

counter = 0

while counter < 3:

 print("Inside loop")

 counter = counter + 1

else:

print("Inside else")

Output

Inside loop

Inside loop

Inside loop

Inside else

 34

Here, we use a counter variable to print the string Inside loop three times. On the forth iteration, the

condition in while becomes False. Hence, the else part is executed.

for loop with else

A for loop can have an optional else block as well. The else part is executed if the items in the

sequence used in for loop exhausts. break statement can be used to stop a for loop. In such case, the

else part is ignored. Hence, a for loop's else part runs if no break occurs.

Here is an example to illustrate this.

digits = [0, 1, 5]

for i in digits:

 print(i)

else:

print("No items left.")

When you run the program, the output will be:

0

1

5

No items left.

 Here, the for loop prints items of the list until the loop exhausts. When the for loop exhausts,

it executes the block of code in the else and prints

The pass Statement

 In Python programming, pass is a null statement. The difference between a comment and pass

statement in Python is that, while the interpreter ignores a comment entirely, pass is not ignored.

However, nothing happens when pass is executed. It results into no operation (NOP).

Syntax of pass

pass

We generally use it as a placeholder.

 Suppose we have a loop or a function that is not implemented yet, but we want to implement

it in the future. They cannot have an empty body. The interpreter would complain. So, we use the pass

statement to construct a body that does nothing.

Example

 sequence = {'p', 'a', 's', 's'}

 for val in sequence:

 pass

 We can do the same thing in an empty function

def function(args):

 pass

Text & Binary Files

FILES

 Most of the programs we have seen so far are transient in the sense that they run for a short

time and produce some output, but when they end, their data disappears. If you run the program again,

it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at least

some of their data in permanent storage (a hard drive, for example); and if they shut down and restart,

they pick up where they left off.

 35

 One of the simplest ways for programs to maintain their data is by reading and writing text

files. An alternative is to store the state of the program in a database.

 Text Files

 A text file is a sequence of characters stored on a permanent medium like a hard drive, flash

memory, or CD-ROM. Text file contain only text, and has no special formatting such as bold text,

italic text, images, etc. Text files are identified with the .txt file extension.

 Reading and Writing to Text Files

 Python provides inbuilt functions for creating, writing and reading files. There are two types

of files that can be handled in python, normal text files and binary files (written in binary language,0s

and 1s).

 Text files: In this type of file, each line of text is terminated with a special character called

EOL (End of Line), which is the new line character („\n‟) in python by default.

 Binary files: In this type of file, there is no terminator for a line and the data is stored after

converting it into machine understandable binary language.

 In order to perform some operations on files we have to follow below steps

 Opening

 Reading or writing

 Closing Here we are going to discusses about opening, closing, reading and writing

data in a text file.

File Access Modes

 Access modes govern the type of operations possible in the opened file. It refers to how the file will

be used once its opened. These modes also define the location of the File Handle in the file. File

handle is like a cursor, which defines from where the data has to be read or written in the file. There

are 6 access modes in python.

 Read Only (‘r’) : Open text file for reading. The handle is positioned at the beginning

of the file. If the file does not exists, raises I/O error. This is also the default mode in

which file is opened.

 Read and Write (‘r+’) : Open the file for reading and writing. The handle is

positioned at the beginning of the file. Raises I/O error if the file does not exists.

 Write Only (‘w’) : Open the file for writing. For existing file, the data is truncated

and over-written. The handle is positioned at the beginning of the file. Creates the

file if the file does not exists.

 Write and Read (‘w+’) : Open the file for reading and writing. For existing file, data

is truncated and over-written. The handle is positioned at the beginning of the file.

 Append Only (‘a’) : Open the file for writing. The file is created if it does not exist.

The handle is positioned at the end of the file. The data being written will be inserted

at the end, after the existing data.

 Append and Read (‘a+’) : Open the file for reading and writing. The file is created if

it does not exist. The handle is positioned at the end of the file. The data being

written will be inserted at the end, after the existing data.

 Opening a File It is done using the open() function. No module is required to be imported for this

function.

Syntax: File_object = open(r"File_Name","Access_Mode")

 The file should exist in the same directory as the python program file else, full address (path will be

discussed in later section of this unit) of the file should be written on place of filename. Note: The r is

placed before filename to prevent the characters in filename string to be treated as special character.

For example, if there is \temp in the file address, then \t is treated as the tab character and error is

 36

raised of invalid address. The r makes the string raw, that is, it tells that the string is without any

special characters. The r can be ignored if the file is in same directory and address is not being placed.

Example:

>>> f1 = open("sample.txt","a")

>>> f2 = open(r"G:\class\python\sample3.txt","w+")

 Here, f1 is created as object for sample.txt and f3 as object for sample3.txt (available in

G:\class\python directory)

 Closing a File close() function closes the file and frees the memory space acquired by that file. It is

used at the time when the file is no longer needed or if it is to be opened in a different file mode.

Syntax: File_object.close()

Example:

 >>> f1 = open("smapl.txt","a")

>>> f1.close()

 After closing a file we can‟t perform any operation on that file. If want to do so we have to open the

file again

 Reading from a File To read the content of a file, we must open the file in reading mode. There are

three ways to read data from a text file.

1.read() : Returns the read bytes in form of a string. Reads n bytes, if no n specified, reads the entire

file.

 File_object.read([n])

 2. readline() : Reads a line of the file and returns in form of a string.For specified n, reads at most n

bytes. However, does not reads more than one line, even if n exceeds the length of the line.

File_object.readline([n])

3. readlines() : Reads all the lines and return them as each line a string element in a list.

File_object.readlines()

Example: Consider the content of file sample.txt that is present in location G:\class\python\code\ as

Read Only

Read and Write

Write OnlyWrite and Read

 Append Only Append and Read

Now execute the following file reading script.

 >>> f1=pen("G:\class\python\code\sample.txt","r")

 >>> f1.read() '

Read Only\nRead and Write\nWrite Only\nWrite and Read\nAppend Only\nAppend and Read'

 Here \n denotes next line character. If you again run the same script, you will get empty string.

Because during the first read statement itself file handler reach the end of the file. If you read again it

will return empty string

 >>> f1.read() ''

So in order to take back the file handler to the beginning of the file you have to open the file again or

use seek() function. We will discuss about seek function in upcoming section.

 >>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.read(10)

'Read Only\n'

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.readline() 'Read Only\n' >>> f1=open("G:\class\python\code\sample.txt","r") >>>

f1.readlines()

 37

['Read Only\n', 'Read and Write\n', 'Write Only\n', 'Write and Read\n', 'Append Only\n',’Append and

Read’]

File Positions

 tell(): The tell() method tells you the current position within the file; in other words, the next read or

write will occur at that many bytes from the beginning of the file.

 seek(): The seek(offset[, from]) method changes the current file position. The offset argument

indicates the number of bytes to be moved. The from argument specifies the reference position from

where the bytes are to be moved.

 If from is set to 0, it means use the beginning of the file as the reference position and 1 means use the

current position as the reference position and if it is set to 2 then the end of the file would be taken as

the reference position. If the second argument is omitted, it also means use the beginning of the file as

the reference position.

Example:

>>> f1=open("G:\class\python\code\sample.txt","r")

 >>> f1.tell()

 0L

 >>> f1.readline()

 'Read Only\n'

 >>> f1.tell()

11L

 >>> f1.seek(0)

 >>> f1.tell()

 0L

 >>> f1.seek(5)

 >>> f1.tell()

 5L

 >>> f1.readline()

 'Only\n'

 Writing to a File

 In order to write into a file we need to open it in write 'w' or append 'a'. We need to be careful with

the 'w' mode as it will overwrite into the file if it already exists. All previous data are erased.

 There are two ways to write in a file.

 1. write() : Inserts the string str1 in a single line in the text file. File_object.write(str1)

 2. writelines() : For a list of string elements, each string is inserted in the text file.Used to insert

multiple strings at a single time.

 File_object.writelines(L) for L = [str1, str2, str3]

 Example:

>>> f4=open("fruit.txt","w")

>>> fruit_list=['Apple\n','Orange\n','Pineapple\n']

 >>> f4.writelines(fruit_list)

 >>> f4.write('Strawberry\n')

 >>> f4.close()

 >>> f4=open("fruit.txt","r")

 >>> f4.read()

'Apple\nOrange\nPineapple\nStrawberry\n

 Appending to a File Adding content at the end of a file is known as append. In order to do

appending operation, we have to open the file with append mode.

 38

 Example:

>>> f4=open('fruit.txt','a')

 >>> f4.write('Banana')

 >>> f4.close()

>>> f4=open('fruit.txt','r')

 >>> f4.read()

'Apple\nOrange\nPineapple\nStrawberry\nBanana\n'

The File Object Attributes Once a file is opened and you have one file object, you can get various

information related to that file. Here is a list of all attributes related to file object:

 Attribute Description

File_object.closed Returns true if file is closed, false otherwise.

File_object.mode Returns access mode with which file was opened.

File_object.name Returns name of the file.

File_object.softspace Returns false if space explicitly required with print, true

otherwise.

 Format Operator The argument of write has to be a string, so if we want to put other values in a

file, we have to convert them to strings. The easiest way to do that is with str:

 >>> f5=open('stringsample.txt','w')

 >>> f5.write(5)

 TypeError: expected a string or other character buffer object

 >>> f5.write(str(5))

 An alternative is to use the format operator, %. When applied to integers, % is the modulus operator.

But when the first operand is a string, % is the format operator. The first operand is the format string,

which contains one or more format sequences, which specify how the second operand is formatted.

The result is a string. For example, the format sequence '%d' means that decimal value is converted to

string.

 >>> run=8

 >>> '%d'%run

'8'

The result is the string '8', which is not to be confused with the integer value 8. Some other format

strings are.

Conversion Meaning

d Signed integer decimal.

I Signed integer decimal.

O Unsigned octal.

u Unsigned decimal.

x Unsigned hexadecimal (lowercase).

X Unsigned hexadecimal (uppercase).

e Floating point exponential format (lowercase).

E Floating point exponential format (uppercase)

. f Floating point decimal format.

F Floating point decimal format.

g Same as "e" if exponent is greater than -4 or less than

precision, "f" otherwise.

G Same as "E " if exponent is greater than -4 or less

than precision, "F" otherwise.

 39

C Single character (accepts integer or single character

string).

r String (converts any python object using repr()).

s String (converts any python object using str()).

% No argument is converted, results in a "%" character

in the result.

A format sequence can appear anywhere in the string, so you can embed a value in a sentence:

 >>> 'India need %d runs'%3

'India need 3 runs'

 If there is more than one format sequence in the string, the second argument has to be a tuple. Each

format sequence is matched with an element of the tuple, in order.

 >>> 'India need %d runs in %d balls'%(3,5)

 'India need 3 runs in 5 balls'

The following example uses '%d' to format an integer, '%g' to format a floating-point number, and

'%s' to format a string:

>>> '%d %s price is %g rupees'%(5,'apple',180.50)

 '5 apple price is 180.500000 rupees'

 The number of elements in the tuple has to match the number of format sequences in the string. Also,

the types of the elements have to match the format sequences:

 >>> '%d %d %d' % (1, 2)

 TypeError: not enough arguments for format string >>>

'%d' % 'apple'

TypeError: %d format: a number is required, not str

 In the first example, there aren‟t enough elements; in the second, the element is the wrong type.

 Filenames and Paths Files are organized into directories (also called “folders”). Every running

program has a “current directory”, which is the default directory for most operations. For example,

when you open a file for reading, Python looks for it in the current directory. The os module

provides functions for working with files and directories (“os” stands for “operating system”).

os.getcwd returns the name of the current directory:

>>> import os

 >>> os.getcwd()

 'C:\\Python27'

 cwd stands for “current working directory”. A string like 'C:\\Python27' that identifies a file or

directory is called a path.

 A simple filename, like 'stringsample.txt' is also considered a path, but it is a relative path because it

relates to the current directory.

 If the current directory 'C:\\Python27', the filename 'stringsample.txt' would refer to

'C:\\Python27\\stringsample.txt '.

 A path that begins with drive letter does not depend on the current directory; it is called an absolute

path. To find the absolute path to a file, you can use os.path.abspath: >>>

os.path.abspath('stringsample.txt') 'C:\\Python27\\stringsample.txt'

 os.path provides other functions for working with filenames and paths. For example, os.path.exists

checks whether a file or directory exists:

 >>> os.path.exists('memo.txt')

 True

 If it exists, os.path.isdir checks whether it‟s a directory:

 >>> os.path.isdir('memo.txt')

 40

 False

 >>> os.path.isdir ('C:\\Python27')

 True

 Similarly, os.path.isfile checks whether it‟s a file. os.listdir returns a list of the files (and other

directories) in the given directory:

 >>> cwd=os.getcwd()

 >>> os.listdir(cwd)

 ['DLLs', 'Doc', 'include', 'infinitLoop.py', 'Lib', 'libs', 'LICENSE.txt', 'NEWS.txt', 'parameter.py',

'python.exe', 'pythonw.exe', 'README.txt', 'sample.txt', 'sample2.txt', 'Scripts', 'stringsample.txt',

'swapwith third.py', 'tcl', 'Tools', 'w9xpopen.exe', 'wc.py', 'wc.pyc']

 To demonstrate these functions, the following example “walks” through a directory, prints the

names of all the files, and calls itself recursively on all the directories.

 >>> def walk(dirname):

for name in os.listdir(dirname):

path = os.path.join(dirname, name)

if os.path.isfile(path):

 print(path)

 else:

 walk(path)

>>> cwd=os.getcwd()

>>> walk(cwd)

 Output:

C:\Python27\DLLs\bz2.pyd

 C:\Python27\DLLs\py.ico

C:\Python27\DLLs\pyc.ico

 C:\Python27\DLLs\pyexpat.pyd

 C:\Python27\DLLs\select.pyd

C:\Python27\DLLs\sqlite3.dll

C:\Python27\DLLs\tcl85.dll

C:\Python27\include\abstract.h

 C:\Python27\include\asdl.h

 C:\Python27\include\ast.h

 os.path.join takes a directory and a file name and joins them into a complete

 path.

>>> os.path.join(cwd,'stringsample.txt')

 'C:\\Python27\\stringsample.txt'

Data Wrangling in Python

Data Wrangling is the process of gathering, collecting, and transforming Raw data into another format

for better understanding, decision-making, accessing, and analysis in less time. Data Wrangling is also

known as Data Munging.

Importance Of Data Wrangling

Data Wrangling is a very important step. The below example will explain its importance as :

Books selling Website want to show top-selling books of different domains, according to user

preference. For example, a new user search for motivational books, then they want to show

those motivational books which sell the most or having a high rating, etc.

 41

But on their website, there are plenty of raw data from different users. Here the concept of

Data Munging or Data Wrangling is used. As we know Data is not Wrangled by System. This

process is done by Data Scientists. So, the data Scientist will wrangle data in such a way that

they will sort that motivational books that are sold more or have high ratings or user buy this

book with these package of Books, etc. On the basis of that, the new user will make choice.

This will explain the importance of Data wrangling.

Data Wrangling in Python

Data Wrangling is a crucial topic for Data Science and Data Analysis. Pandas Framework of

Python is used for Data Wrangling. Pandas is an open-source library specifically developed

for Data Analysis and Data Science. The process like data sorting or filtration, Data grouping,

etc.

Data wrangling in python deals with the below functionalities:

1. Data exploration: In this process, the data is studied, analyzed and understood by visualizing

representations of data.
2. Dealing with missing values: Most of the datasets having a vast amount of data contain

missing values of NaN, they are needed to be taken careof by replacing them with mean,

mode, the most frequent value of the column or simply by dropping the row having a
NaNvalue.

3. Reshaping data: In this process, data is manipulated according to the requirements, where

new data can be added or pre-existing data can be modified.

4. Filtering data: Some times datasets are comprised of unwanted rows or columns which are
required to be removed or filtered

5. Other: After dealing with the raw dataset with the above functionalities we get an efficient

dataset as per our requirements and then it can be used for a required purpose like data

analyzing, machine learning, data visualization, model training etc.

Below is an example which implements the above functionalities on a raw dataset:

 Data exploration, here we assign the data, and then we visualize the data in a tabular format.

Python3

Import pandas package

importpandas as pd

Assign data

data ={'Name': ['Jai', 'Princi', 'Gaurav',

 'Anuj', 'Ravi', 'Natasha', 'Riya'],

 'Age': [17, 17, 18, 17, 18, 17, 17],

 'Gender': ['M', 'F', 'M', 'M', 'M', 'F', 'F'],

 'Marks': [90, 76, 'NaN', 74, 65, 'NaN', 71]}

 # Convert into DataFrame

df =pd.DataFrame(data)

Display data

df

output:

 42

 Dealing with missing values, as we can see from the previous output, there are NaNvalues

present in the MARKS column which are going to be taken care of by replacing them with the

column mean.

Python3
Compute average

c =avg =0

forele indf['Marks']:

 ifstr(ele).isnumeric():

 c +=1

 avg +=ele

avg /=c

Replace missing values

df =df.replace(to_replace="NaN",

 value=avg)

 # Display data

Df

Output:

 Reshaping data, in the GENDER column, we can reshape the data by categorizing

them into different numbers.

Python3

Categorize gender

df['Gender'] =df['Gender'].map({'M': 0,

 'F': 1, }).astype(float)

 43

 # Display data

df

 Filtering data, suppose there is a requirement for the details regarding name, gender,

marks of the top-scoring students. Here we need to remove some unwanted data

Python3

Filter top scoring students

df =df[df['Marks'] >=75]

Remove age row

df =df.drop(['Age'], axis=1)

 # Display data

Df

Output:

 Hence, we have finally obtained an efficient dataset which can be further used for

various purposes.

 Now that we know the basics of data wrangling. Below we will discuss various

operations using which we can perform data wrangling:

Wrangling Data Using Merge Operation

Merge operation is used to merge raw data and into the desired format.

Syntax

pd.merge(data_frame1,data_frame2, on="field ")

Here the field is the name of the column which is similar on both data-frame.

For example: Suppose that a Teacher has two types of Data, first type of Data consist of

Details of Students and Second type of Data Consist of Pending Fees Status which is taken

from Account Office. So The Teacher will use merge operation here in order to merge the

data and provide it meaning. So that teacher will analyze it easily and it also reduces time and

effort of Teacher from Manual Merging.

 44

FIRST TYPE OF DATA:
Python3

import module

importpandas as pd
 # creating DataFrame for Student Details

details =pd.DataFrame({

 'ID': [101, 102, 103, 104, 105, 106,
 107, 108, 109, 110],

 'NAME': ['Jagroop', 'Praveen', 'Harjot',

 'Pooja', 'Rahul', 'Nikita',

 'Saurabh', 'Ayush', 'Dolly', "Mohit"],
 'BRANCH': ['CSE', 'CSE', 'CSE', 'CSE', 'CSE',

 'CSE', 'CSE', 'CSE', 'CSE', 'CSE']})

 # printing details
print(details)

Output:

SECOND TYPE OF DATA:

Python3

Import module

importpandas as pd

 # Creating Dataframe for Fees_Status

fees_status =pd.DataFrame(

 {'ID': [101, 102, 103, 104, 105,

 106, 107, 108, 109, 110],

 'PENDING': ['5000', '250', 'NIL',

 '9000', '15000', 'NIL',

 '4500', '1800', '250', 'NIL']})

 # Printing fees_status

print(fees_status)

Output:

 45

WRANGLING DATA USING MERGE OPERATION:

Python3
Import module

importpandas as pd

Creating Dataframe
details =pd.DataFrame({

 'ID': [101, 102, 103, 104, 105,

 106, 107, 108, 109, 110],

 'NAME': ['Jagroop', 'Praveen', 'Harjot',
 'Pooja', 'Rahul', 'Nikita',

 'Saurabh', 'Ayush', 'Dolly', "Mohit"],

 'BRANCH': ['CSE', 'CSE', 'CSE', 'CSE', 'CSE',
 'CSE', 'CSE', 'CSE', 'CSE', 'CSE']})

Creating Dataframe
fees_status =pd.DataFrame(

 {'ID': [101, 102, 103, 104, 105,

 106, 107, 108, 109, 110],

 'PENDING': ['5000', '250', 'NIL',
 '9000', '15000', 'NIL',

 '4500', '1800', '250', 'NIL']})

 # Merging Dataframe
print(pd.merge(details, fees_status, on='ID'))

Output:

Wrangling Data using Grouping Method

The grouping method in Data analysis is used to provide results in terms of various groups

taken out from Large Data. This method of pandas is used to group the outset of data from

the large data set.

 46

Example: There is a Car Selling company and this company have different Brands of various

Car Manufacturing Company like Maruti, Toyota, Mahindra, Ford, etc. and have data where

different cars are sold in different years. So the Company wants to wrangle only that data

where cars are sold during the year 2010. For this problem, we use another Wrangling

technique that isgroupby() method.

CARS SELLING DATA:

Python3
Import module

importpandas as pd

Creating Data
car_selling_data ={'Brand': ['Maruti', 'Maruti',

'Maruti',

 'Maruti', 'Hyundai', 'Hyundai',
 'Toyota', 'Mahindra', 'Mahindra',

 'Ford', 'Toyota', 'Ford'],

 'Year': [2010, 2011, 2009, 2013,

 2010, 2011, 2011, 2010,
 2013, 2010, 2010, 2011],

 'Sold': [6, 7, 9, 8, 3, 5,

 2, 8, 7, 2, 4, 2]}

Creating Dataframe of car_selling_data

df =pd.DataFrame(car_selling_data)
 # printing Dataframe

print(df)

Output:

DATA OF THEYEAR 2010:

Python3

Import mdoule

importpandas as pd

 # Creating Data

car_selling_data ={'Brand': ['Maruti', 'Maruti', 'Maruti',

 'Maruti', 'Hyundai', 'Hyundai',

 'Toyota', 'Mahindra', 'Mahindra',

 'Ford', 'Toyota', 'Ford'],

 'Year': [2010, 2011, 2009, 2013,

 2010, 2011, 2011, 2010,

 2013, 2010, 2010, 2011],

 47

 'Sold': [6, 7, 9, 8, 3, 5,

 2, 8, 7, 2, 4, 2]}

Creating Dataframe for Provided Data

df =pd.DataFrame(car_selling_data)

 # Group the data when year = 2010

grouped =df.groupby('Year')

print(grouped.get_group(2010))

Output:

Wrangling data by removing Duplication

Pandas duplicates() method helps us to remove duplicate values from Large Data. An

important part of Data Wrangling is removing Duplicate values from the large data set.

Syntax:
DataFrame.duplicated(subset=None, keep='first')

Here subset is the column value where we want to remove Duplicate value.

In keep, we have 3 options :

 if keep =’first’ then the first value is marked as original rest all values if occur will be

removed as it is considered as duplicate.

 if keep=’last’ then the last value is marked as original rest all above same values will

be removed as it is considered as duplicate values.

 if keep =’false’ the all the values which occur more than once will be removed as all

considered as a duplicate value.

For example, A University will organize the event. In order to participate Students have to fill

their details in the online form so that they will contact them. It may be possible that a student

will fill the form multiple time. It may cause difficulty for the event organizer if a single

student will fill multiple entries. The Data that the organizers will get can be Easily Wrangles

by removing duplicate values.

DETAILS STUDENTS DATA WHO WANT TO PARTICIPATE IN THE EVENT:
Python3

Import module

importpandas as pd
Initializing Data

student_data ={'Name': ['Amit', 'Praveen', 'Jagroop',

 'Rahul', 'Vishal', 'Suraj',
 'Rishab', 'Satyapal', 'Amit',

 'Rahul', 'Praveen', 'Amit'],

 'Roll_no': [23, 54, 29, 36, 59, 38,
 12, 45, 34, 36, 54, 23],

 'Email': ['xxxx@gmail.com', 'xxxxxx@gmail.com',
 'xxxxxx@gmail.com', 'xx@gmail.com',

 'xxxx@gmail.com', 'xxxxx@gmail.com',

 48

 'xxxxx@gmail.com', 'xxxxx@gmail.com',
 'xxxxx@gmail.com', 'xxxxxx@gmail.com',

 'xxxxxxxxxx@gmail.com', 'xxxxxxxxxx@gmail.com']}

 # Creating Dataframe of Data

df =pd.DataFrame(student_data)
Printing Dataframe

print(df)

Output:

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.
A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

Create Object

Now we can use the class named MyClass to create objects:

Example
Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

The __init__() Function

The examples above are classes and objects in their simplest form, and are not really useful in real life

applications.

To understand the meaning of classes we have to understand the built-in __init__() function.
All classes have a function called __init__(), which is always executed when the class is being

initiated.

 49

Use the __init__() function to assign values to object properties, or other operations that are necessary
to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Note: The __init__() function is called automatically every time the class is being used to create a
new object.

Object Methods
Objects can also contain methods. Methods in objects are functions that belong to the object.

Let us create a method in the Person class:

Example
Insert a function that prints a greeting, and execute it on the p1 object:

class Person:

 def __init__(self, name, age):
 self.name = name

 self.age = age

 def myfunc(self):
 print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc()

Note: The self parameter is a reference to the current instance of the class, and is used to access

variables that belong to the class.

Inheritance

Inheritance allow us to define a class that inherits all the methods and properties from another class

Parent class is the class being inherited from also called base class

Child class is the class that inherits from another class also called derived class

Create a parent class

Any class can be a parent class so the syntax is the same as creating any class

Example
 create a class named person, with first name and last name properties and a print name method.

Class person:

def__init__(self,fname,lname):

Self.firstname=fname
Self.lastname=lname

def printname(self):

Print(self.firstname, self.lastname)
Use the person class to create an object and execute the print name method:

X=person(“john”,”doc”)

x.printname()

create a child class

To create a class that inherits the functionality from another class, send the parent class as a parents

when creating the child class

Example
Create a class named student, which will inherit the properties and method from the person class

 50

Class student (person):
pass

now the student class has the some properties methods as the person class

Example

use the student class to create an object and the execute the print name method:
x=student(“milk”,”water”)

x.printname()

Add the__init__() function
So for have created a child class that inherits the properties &methods from its parent.we want to add

the__init __()function to the child class (instead of the pass keyword)

Note:The __init__()function is called automatically every time is being used to create new object.

Example:Add the __init__()function to the student class

Classstudemt(person):
def__init__(self,fname,lname):

when you add the __init__()function, the child class will no longer inherit the parents

__init__()function

Note: The child __init__()function overrides the inheritance of the parent’s__init__()function.

To keep the inheritance of the parent’s

__init__()function,add a cell to the parents

__init__()function:

Example:
class student(person):

def__init__(self,fname,lname):

person__init__(self,fname,lname)
added the __init__()function &kept the inheritance of the parent class use the super()function

python also has a super()function that will make the child class inherit all the methods &properties

from its parent

Example:
class student(person):

def__init__(self,fname,lname):

super()__init__(fname,lname):
super()function you do not have the name of the name of the parent element, it will automatically

inherit the methods &properties from its parent

Add properties
Add properties called graduation year to the student class

Class student(person)

def__init__(self,fname,lname):

super()__init__(fname,lname)
self.graduation year=2019

2019should be variable &passed into the students class creating student object to add another

parameter in__init__()function

Example

Add year parameter &pass the correct year when creating object

Create student(person):
def__init__(self,fname,lname,year)

super()__init__(fname,lname)

self.graduation year=year

x=student(“milk”,”water”,2019)
Add method

Addmethod called welcome to the student class

 51

Class student(person)

def__init__(self,fname,lname,year):

super()__init__(fname,lname)

self.graduation year=year
def welcome(self):

print(“welcome”,self.firstname,self.lastnames,” to the class of” self.graduationyear)

child class with the same name as function in the parent class the inheritance of the parent method
will be overriden

constructor
constructor is a special method that is used to initialize a newely created object and is called just after

the memory is allocated for the object.

Default constructor: it is simple constructor which doesn’t accept any arguments .It’s definition has

only one argument which is a reference to the instance being constructed.
Parameterized constructor: constructor with parameters is known as parameterized constructor take its

first argument as a reference to the instance being constructed known as self and the rast of the

arguments are provided by the programmer
Syntax:def_init_(self.[argument values(3)]):

Self.memberName=argument value.

Features of Python Constructors:

 In Python, a Constructor begins with double underscore (_) and is always named as

__init__().

 In python Constructors, arguments can also be passed.

 In Python, every class must necessarily have a Constructor.

 If there is a Python class without a Constructor, a default Constructor is automatically

created without any arguments and parameters.

 Example:

class Employees():

 def __init__(self, Name, Salary):

 self.Name = Name

 self.Salary = Salary

 def details(self):

 print "Employee Name : ", self.Name

 print "Employee Salary: ", self.Salary

 print "\n"

first = Employees("Khush", 10000)

second = Employees("Raam", 20000)

third = Employees("Lav", 10000)

fourth = Employees("Sita", 30000)

fifth = Employees("Lucky", 50000)

first.details()

second.details()

third.details()

fourth.details()

fifth.details()

 52

 Output:

	MODULE-4
	PYTHON CONCEPTS AND DATANWRANGLING
	Data Structure
	Liner Data Structures
	Non-Liner Data Structures

	Python Specific Data Structures
	VALUES AND TYPES
	Data Wrangling in Python
	Data Wrangling in Python
	Below is an example which implements the above functionalities on a raw dataset:

	Python3
	Python3 (1)
	Python3 (2)
	Python3 (3)
	Wrangling Data Using Merge Operation
	Python3 (4)
	Python3 (5)
	Python3 (6)
	Wrangling Data using Grouping Method
	Python3 (7)
	Python3 (8)
	Wrangling data by removing Duplication
	Python Classes/Objects
	Create a Class
	Example

	Create Object
	Example

	The __init__() Function
	Example

	Object Methods
	Example

