
Aggregating Time Series
You can combine points from multiple time series using an aggregation function such

as sum(), avg(), min(), count(), percentile() etc. An aggregation function returns a series of
points whose values are calculated from corresponding points in two or more input time series.
Wavefront supports aggregation with interpolation or without interpolation:

 Standard aggregation functions (e.g. sum(), avg(), or max()) first interpolate the points of
the underlying set of series, and then apply the aggregation function to the interpolated

series. These functions aggregate multiple series down, usually to a single series.

 Raw aggregation functions (e.g. rawsum(), rawavg()) do not interpolate the underlying

series before aggregation.

 Moving window functions (e.g. msum(), mavg() and mmax() aggregate series horizontally
across a chart by time. They take each individual series and aggregate its own prior
behavior across the timeWindow. For example, you can get the maximum value for each
series in the specified time window.

Aggregating Data Points That Line Up

The easiest way to see the results of an aggregation function is when all of the input series report
their data points at exactly the same time. This causes the points at any given timestamp to all
line up. The aggregation function operates on the values in each lineup of points, and returns
each result in a point at the corresponding timestamp.

For example, consider the two time series in the following chart. The reporting interval for these
series is 1 minute, and the points in these series “line up” at each 1-minute mark on the x-axis.
We use a point plot to reveal the correspondences between reported points.

https://docs.wavefront.com/query_language_reference.html#aggregation-functions
https://docs.wavefront.com/query_language_windows_trends.html

Now we use the sum() function to aggregate these two time series. Each blue point produced
by sum() is the result of adding the data values reported by the input series at the same minute.

Aggregating When Data Points Do Not Line Up

In many cases, the set of time series you specify to an aggregation function will have data points
that do not “line up” at corresponding moments in time. For example:

 All input series might report data points regularly, but some might report at a longer or
shorter interval than the others.

 One input series might report at irregular times that don’t match the reporting times of
any other input series.

 One otherwise regular input series might have gaps due to reporting interruptions (e.g.,
intermittent server or network downtime) which are not experienced by the other input
series.

Wavefront provides two kinds of aggregation functions for handling this situation:

 Standard aggregation functions fill in the gaps in each input series by interpolating
values, and therefore operate on interpolated values as well as actual reported data

points.

 Raw aggregation functions do not interpolate the underlying series before aggregation,

but rather operate only on actual reported data points.

Standard Aggregation Functions (Interpolation)

Standard aggregation functions fill in the gaps in each input series by interpolating values.

For example, let’s start with a pair of series with reporting intervals that do not line up. In the
following chart, series 1 reports once a minute. We can use align() or downsample() to
have series 2 report only every 150 seconds (2.5 minutes). Both series have data points aligned
at the 5 minute marks, but the points in between are not aligned.

https://docs.wavefront.com/query_language_aggregate_functions.html#standard-aggregation-functions-interpolation
https://docs.wavefront.com/query_language_aggregate_functions.html#raw-aggregation-functions-no-interpolation

Now we use the sum() function (a standard aggregation function) to aggregate these two time
series. In the following chart, we see that sum() produces a result for every moment in time that a
data point is reported by at least one input series. Whenever both series report a data point at
the same time (at each 5 minute mark), sum() returns a data point whose value is the sum of
both reported points.

The result at 2:34 is more interesting. At this moment in time, only series 1 reports a point,
but sum() returns the value 368.800. sum() produces the return value by adding 176 to
an interpolated value from series 2. Interpolation inserts an implicit point into series 2 at 2:34,
and assigns an estimated value to that point based on the values of the actual, reported

points. sum() uses the estimated value (in this case, 213.000) to calculate the value returned at
2:34.

Requirements for Interpolation

Wavefront interpolates a value into an input time series only under the following circumstances:

 When at least one other input time series reports a real data value at the same moment
in time. In our example, no values are interpolated at, say, 4:26:30, because neither input
series reports a point at that time.

 When the time series has an actual reported value on either side of it. Sometimes this
cannot occur, for example, when a new data point has not been reported yet at the right
edge of a live-view chart. In this case, Wavefront inserts implicit points wherever needed,
and assigns the last known reported value in the time series to those implicit points. (The
last known reported value must be reported within the last 15% of the query time in the
chart window.)

Raw Aggregation Functions (No Interpolation)

You can use raw aggregation functions instead of standard aggregation functions if you want the
results to be based on actual reported values, without any interpolated values. For example, you
might use raw aggregation results as a way of detecting when one or more input time series fail
to report a value.

Let’s see how the raw aggregation function rawsum() treats the two sample time series from the
previous section. The following chart shows that rawsum(), like sum(), produces a result
for every moment in time that a data point is reported by at least one input series.

Unlike sum(), rawsum() produces its results by adding up just the actual values at each reporting
moment. At 4:26, for example, rawsum() returns 164.00, which is the only value reported at this
time. No values from series 2 are present at that time, and none are interpolated.

Whenever both series report a data point at the same time (for example, 4:25), rawsum() returns
a data point whose value is the sum of both reported points (169.05 + 162 = 331.05).

Filtering the Aggregation Input

You use an expression to describe the set of time series to be aggregated. When using a ts()
expression, you can include filters to narrow the set. For example, if multiple sources are
reporting the metric ~sample.cpu.loadavg.1m:

 sum(ts(~sample.cpu.loadavg.1m)) shows the sum of the values reported for the metric
from all sources.

 sum(ts(~sample.cpu.loadavg.1m, source=app-1*)) shows the sum of the values
reported for the metric, but only from sources that match app-1*.

 sum(ts(~sample.cpu.loadavg.1m, source=app-1*, env=prod)) further filters the input
series to those with the point tag env=prod.

Grouping the Aggregation Results

Each aggregation function accepts a ‘group by’ parameter that allows you to subdivide the input

time series into groups, and request separate aggregates for each group.

A chart displays a separate line for each group when you use a ‘group by’ parameter with an
aggregation function. For example, assume your environment uses an az point tag to group by
availability zone. You call:

sum(ts(~sample.cpu.loadavg.1m), az)

The call groups the result of the call to sum() into two time series, one for each availability zone.

 Note: Wavefront has supported grouping by using an implicit parameter from the beginning.

Starting with release 2020.22.x, we also support an explicit by parameter and an

explicit without parameter.

'Group By'

Parameter

Description Example

metrics Group the series with the same

metric name.

sum(ts(cpu.loadavg.1m), metrics)

sources Group the series that are reported

from the same source.

sum(ts(cpu.loadavg.1m), sources)

sourceTags Group the series that are reported

from sources with the same source

tag names. A source tag is

valid only if it is explicitly specified in

the ts() expression.

sum(ts(cpu.loadavg.1m, tag=prod

or tag=db),sourceTags)

pointTags Group the series by all available

point tag keys.

sum(ts(cpu.loadavg.1m),

pointTags)

<pointTagKey> Group the series with common

values for a particular point tag key.

Specify the point tag key by name,

such as region.

sum(ts(cpu.loadavg.1m), region)

Grouping with by or without

Starting with release 2020.22.x, the query line supports two new keywords:

 The by keyword has the same result as the comma in a query. The following two queries
are equivalent:

 sum(ts(~sample.cpu.loadavg.1m), az, sources)

 sum(ts(~sample.cpu.loadavg.1m) by (az, sources))

 The without keyword allows you to group all possible group parameters except for those
listed. The following example groups all available grouping parameters except
for sources and source tags. In this case, that means grouping by the two point tag

keys az and env.

A Closer Look at Grouping with sourceTags

The sourceTags parameter behaves a little differently from the other grouping
parameters. sourceTags produces a subgroup that corresponds to each source tag that is
explicitly specified in the ts() expression. No other source tags are taken into account.

For example, suppose you added 3 source tags (prod, db, and highPriority) to the
metric cpu.loadavg.1m, and now you want to use the sourceTags parameter with sum() to return
subtotals based on the source tags.

 The following query returns only 2 subtotals - one for the group with the source
tag prod and one for the group with the source tag db:

 sum(ts(cpu.loadavg.1m, tag=prod or tag=db),sourceTags)

 The following query returns 3 subtotals, one for each source tag:

 sum(ts(cpu.loadavg.1m, tag=prod or tag=db or
tag=highPriority),sourceTags)

In contrast, a ‘group by’ parameter like pointTags produces a separate aggregate corresponding
to every point tag that is associated with the specified time series, even if the ts() expression
does not explicitly specify any point tags as filters.

Aggregation Example

The chart below represents 3 unique series reporting latency data. The sections with dashed

lines represent gaps where no data is reported.

The series report data like this:

 Two of the reporting series have gaps of missing data between 9:15a and 9:21a.

 All three reporting series have gaps of missing data between 9:27a and 9:30a

 One reporting series has a gap of missing data between 9:36a and 9:42a.

The following chart shows what happens when we apply sum() (orange line) and rawsum() (blue
line) to the three time series.

The lines are different because interpolation occurs with the standard aggregation function
(sum()), but not with the raw aggregation function (rawsum()).

Example: Standard Aggregation Function

When there is at least 1 true data value reported at a given interval, standard aggregation
functions interpolate data values before executing the aggregation.

The data values in the charts above are typically reported once a minute. In the chart that shows
the 3 time series, we see that:

 Between 9:15a and 9:21a, the orange series reports once a minute, on the minute, while
the other two series do not. Because the orange series reports at least 1 true data value
during this time, Wavefront interpolates the values for the blue and green series before
calculating the sum() value.

 Between 9:36a and 9:42a the green and orange series report data values every minute,
but the blue series does not. Wavefront does interpolation before aggregation.

Example: Raw Aggregation Function

Raw aggregation functions on the other hand calculate aggregates based on actual reported

values (no interpolation).

 Between 9:15a and 9:21a, the rawsum() values are approximately 1/3 of the sum() values
(1 of 3 series reported values)

 Between 9:36a and 9:42a, the rawsum() values are approximately 2/3 of the sum() value
(2 of 3 series reported values).

Note that the gap between 9:27a and 9:30a is exactly the same regardless of which aggregation
function type we use. None of the series included in the aggregation reported a data value during
this time. As a result, the standard aggregation function does not apply interpolated values during
this gap, and the result of aggregation looks the same for sum() and rawsum().

The behavior differences between standard and raw apply to all aggregation functions (sum, avg,
min, max, count, variance, percentile).

Aggregation Best Practice – When to Use Raw or

Aggregated Data

Your use case and data shape determines whether running queries over raw data or over
aggregated data makes more sense.

 Use aggregated data if you want quick and precise results for all points in time in which
at least one time series reported.

 Use raw data if you aggregate over a large search space (many time series, long time).
When the system has to perform interpolation (see above) over a large search space,
query performance can suffer.

 As a compromise, consider calling align() before applying raw aggregation functions, for
example, rawsum(align(1m, ts("my_data")))

Here are some details:

What’s Your Data Shape?

Interpolation requires additional resources. Using a non-raw aggregation function on several
thousand time series might affect query performance – and if you’re looking at several weeks or
months of data, you’ll need even more resources. For those cases, consider using raw
aggregation, which comes at the cost of slightly less precision.

Are Skipped Values Common in the Data You’re Analyzing?

Consider whether your time series have natural gaps and what you want to do for those cases.
For example, suppose you want to aggregate the number of errors reported across multiple time
series. Does the time series report 0 at regular intervals when no errors occur or skip the
reporting interval?

 If the time series reports 0 when there’s no value, you don’t need interpolation and can

safely use the raw aggregation function.

 If the time series skips the reporting interval, consider whether you want interpolation,
that is, “pretend” there is a value even though there is no value – or possibly change the

data sources to report 0 is a solution.

Are Reporting Intervals Staggered?

If reporting intervals are staggered, non-raw aggregation (and interpolation) can give you quick
value.

For example, suppose you’re evaluating 10 time series over a 1 hour window. Each time series
reports once per minute, but they don’t report at the same time (align). By using a non-raw

aggregation function you can get interpolation and a fast result.

If, in that same scenario, you’re evaluating 1000 time series over a 1 week time window, a large
data set results and interpolation might impact performance. For that case, you can
use align() together with a raw aggregation function to get the benefit of aligned data without
the performance hit of interpolation, for example:

rawavg(align(1m, ts("my_data")))

	Aggregating Time Series
	Aggregating Data Points That Line Up
	Aggregating When Data Points Do Not Line Up
	Standard Aggregation Functions (Interpolation)
	Raw Aggregation Functions (No Interpolation)

	Filtering the Aggregation Input
	Grouping the Aggregation Results
	Grouping with by or without
	A Closer Look at Grouping with sourceTags

	Aggregation Example
	Aggregation Best Practice – When to Use Raw or Aggregated Data
	What’s Your Data Shape?
	Are Skipped Values Common in the Data You’re Analyzing?
	Are Reporting Intervals Staggered?

