
AGGREGATION

Aggregation is the process of combining or grouping data together into a set, bag, or list. The data

may or may not be alike. However, in most cases, an aggregation function combines several rows

together statistically using algorithms such as average, count, maximum, median, minimum, mode,

or sum.

Aggregation IN DBMS

In aggregation, the relation between two entities is treated as a single entity. ... For example: Center

entity offers the Course entity act as a single entity in the relationship which is in a relationship with

another entity visitor.

DBMS is advantageous over the file system because it reduces data redundancy (through

database normalization) and enhances data integrity. It also offers flexibility, privacy, and

data security.

A DBMS consists of entities whose data can be stored. They can be people, things, objects, or

places. Two or more entities are joined through a relationship, that is simply a way of

connecting data sets. Some entities in a DBMS may have little value, which makes it difficult

to use them for certain operations.

In such situations, we can combine these entities with other entities to form a complex one

that makes sense. We can do this operation through a process called aggregation.

Aggregation in DBMS links trivial entities through relationships to ensure that the entire

system functions well.

Aggregation in DBMS

Aggregation refers to the process by which entities are combined to form a single meaningful

entity. The specific entities are combined because they do not make sense on their own. To

establish a single entity, aggregation creates a relationship that combines these entities. The

resulting entity makes sense because it enables the system to function well.

When using data in the form of numerical values, the following operations can be used to

perform DBMS aggregation:

 Average (AVG): This function provides the mean or average of the data values.

 Sum: This provides a total value after the data values have been added.

 Count: This provides the number of records.

 Maximum (Max): This function provides the maximum value of a given set of data.

 Minimum (Min): This provides the minimum value of a given set of data.

 Standard deviation (std dev): This provides the dispersion or variation of the sets of

data. Let’s take a simple example of a database of student marks. If the standard

deviation is high, it means the average is obtained by lower number of students than

usual, and the lowest and highest marks are higher.

https://en.wikipedia.org/wiki/Data_redundancy
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Data_integrity

 Reasons for using aggregation in DBMS

Aggregation is used when the DBMS has the following characteristics.

 Many trivial entities: A DBMS may consist of many entities that are not significant

enough to provide meaningful information. In such a case, the trivial entities can be

combined into one complex entity through aggregation. For example, many trivial

entities called rooms can be combined to form a single entity called hotel.

 One trivial entity: Aggregation is also needed if a DBMS has a single trivial entity

that should be used for multiple operations. In this case, the trivial entity is used to

form relationships with other entities. This may lead to many aggregation entities

depending on the operations required. For example, an employee in an organization

may be given an insurance policy that covers his dependants. The entity dependants is

a trivial entity because it cannot exist without the entity employee.

 Inapplicable entity-model relationship: The entity-model relationship cannot be

applied to certain entities within the system. These specific entities can be combined

with other entities to allow the application of the entity-model relationship in the

entire system. This ensures that all the entities in the system are utilized. For example,

the entity-model relationship for students can only be applied if students enroll in a

class. The entity grade can only be formed if the relationship enroll exists.

Process flow for aggregation in DBMS

Aggregation in DBMS can be explained using the entity-relationship model (ER model). This

is a conceptual diagram that represents the structure of a database and its components. It

contains the relationships, attributes, and entities in a DBMS. This is similar to the columns,

rows, and tables in a database.

The following are the main types of relationships in an ER model:

 One-to-one: Here, the trivial entity forms a relationship with only one other entity.

For example, one employee can work in only one department of an organization.

 One-to-many: In this relationship, one entity forms a relationship with multiple

entities. For example, an employee can work in multiple departments within the same

organization.

 Many-to-one: Here, multiple entities in a certain entity set can form a relationship

with only one entity. For example, many employees can work in only one department.

 Many-to-many: In this category, multiple entities from a certain entity set, that can

form a relationship with many entities from another entity set. For example, many

employees can work in multiple departments within the same organization.

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

The following diagram shows a simple ER model that can be used to explain the process flow

for aggregation in DBMS.

In this ER model, A, B, and C represent entities. A and B should be combined into a single

complex entity. R1 is the relationship that is formed after A and B are linked. R1 needs to

form a relationship with other entities for other DBMS operations to be successful.

This operation generates a new relationship (R2). R2 is linked to another entity C to enhance

its functionality. This entity is also formed through aggregation.

Example of aggregation in DBMS

Let’s assume that there is a patient who has visited a doctor in the hospital to seek treatment

for a certain type of illness. The following diagram shows the process flow for aggregation in

the hospital.

Image Source: EDUCBA

We will follow the simple ER model described above. In the diagram above, there are three

entities: patient history, the doctor, and the patient. Filing and diagnosis represent

relationships. The doctor performs a diagnosis on the patient.

The database stores data regarding this diagnosis and any other patient data. Filing is required

to make it easier for the doctor to retrieve the patient’s information in the future.

In this example, the patient cannot work on his own. He has to form a relationship with the

doctor to get a diagnosis. The doctor also cannot perform a diagnosis without the patient. In

https://cdn.educba.com/academy/wp-content/uploads/2020/03/aggregation-in-dbms0.jpg

the future, the doctor will need data about the patient’s history, that will require him to collect

it from a filing system.

The last entity (patient’s history) ensures that the entire system is functional. Getting the

patient’s history cannot be done without a diagnosis from the doctor and a filing system.

An essential piece of analysis of large data is efficient summarization: computing

aggregations like sum(), mean(), median(), min(), and max(), in which a single number

gives insight into the nature of a potentially large dataset. In this section, we'll explore

aggregations in Pandas, from simple operations akin to what we've seen on NumPy arrays, to

more sophisticated operations based on the concept of a groupby.

For convenience, we'll use the same display magic function that we've seen in previous

sections:

import numpy as np

import pandas as pd

class display(object):

 """Display HTML representation of multiple objects"""

 template = """<div style="float: left; padding: 10px;">

 <p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}

 </div>"""

 def __init__(self, *args):

 self.args = args

 def _repr_html_(self):

 return '\n'.join(self.template.format(a, eval(a)._repr_html_())

 for a in self.args)

 def __repr__(self):

 return '\n\n'.join(a + '\n' + repr(eval(a))

 for a in self.args)

Planets Data

Here we will use the Planets dataset, available via the Seaborn package (see Visualization

With Seaborn). It gives information on planets that astronomers have discovered around other

stars (known as extrasolar planets or exoplanets for short). It can be downloaded with a

simple Seaborn command:

import seaborn as sns

planets = sns.load_dataset('planets')

planets.shape

(1035, 6)

planets.head()

method number orbital_period mass distance year

0 Radial Velocity 1 269.300 7.10 77.40 2006

http://seaborn.pydata.org/
https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html

method number orbital_period mass distance year

1 Radial Velocity 1 874.774 2.21 56.95 2008

2 Radial Velocity 1 763.000 2.60 19.84 2011

3 Radial Velocity 1 326.030 19.40 110.62 2007

4 Radial Velocity 1 516.220 10.50 119.47 2009

This has some details on the 1,000+ extrasolar planets discovered up to 2014.

Simple Aggregation in Pandas

Earlier, we explored some of the data aggregations available for NumPy arrays

("Aggregations: Min, Max, and Everything In Between"). As with a one-dimensional NumPy

array, for a Pandas Series the aggregates return a single value:

rng = np.random.RandomState(42)

ser = pd.Series(rng.rand(5))

ser

0 0.374540

1 0.950714

2 0.731994

3 0.598658

4 0.156019

dtype: float64

ser.sum()

2.8119254917081569

ser.mean()

0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:

df = pd.DataFrame({'A': rng.rand(5),

 'B': rng.rand(5)})

df

A B

0 0.155995 0.020584

1 0.058084 0.969910

2 0.866176 0.832443

3 0.601115 0.212339

4 0.708073 0.181825

https://jakevdp.github.io/PythonDataScienceHandbook/02.04-computation-on-arrays-aggregates.html

df.mean()

A 0.477888

B 0.443420

dtype: float64

By specifying the axis argument, you can instead aggregate within each row:

df.mean(axis='columns')

0 0.088290

1 0.513997

2 0.849309

3 0.406727

4 0.444949

dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in

Aggregations: Min, Max, and Everything In Between; in addition, there is a convenience

method describe() that computes several common aggregates for each column and returns

the result. Let's use this on the Planets data, for now dropping rows with missing values:

planets.dropna().describe()

number orbital_period mass distance year

count 498.00000 498.000000 498.000000 498.000000 498.000000

mean 1.73494 835.778671 2.509320 52.068213 2007.377510

std 1.17572 1469.128259 3.636274 46.596041 4.167284

min 1.00000 1.328300 0.003600 1.350000 1989.000000

25% 1.00000 38.272250 0.212500 24.497500 2005.000000

50% 1.00000 357.000000 1.245000 39.940000 2009.000000

75% 2.00000 999.600000 2.867500 59.332500 2011.000000

max 6.00000 17337.500000 25.000000 354.000000 2014.000000

This can be a useful way to begin understanding the overall properties of a dataset. For

example, we see in the year column that although exoplanets were discovered as far back as

1989, half of all known expolanets were not discovered until 2010 or after. This is largely

thanks to the Kepler mission, which is a space-based telescope specifically designed for

finding eclipsing planets around other stars.

The following table summarizes some other built-in Pandas aggregations:

Aggregation Description

https://jakevdp.github.io/PythonDataScienceHandbook/02.04-computation-on-arrays-aggregates.html

Aggregation Description

count() Total number of items

first(), last() First and last item

mean(), median() Mean and median

min(), max() Minimum and maximum

std(), var() Standard deviation and variance

mad() Mean absolute deviation

prod() Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

To go deeper into the data, however, simple aggregates are often not enough. The next level

of data summarization is the groupby operation, which allows you to quickly and efficiently

compute aggregates on subsets of data.

GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we would prefer to

aggregate conditionally on some label or index: this is implemented in the so-called groupby

operation. The name "group by" comes from a command in the SQL database language, but it

is perhaps more illuminative to think of it in the terms first coined by Hadley Wickham of

Rstats fame: split, apply, combine.

Split, apply, combine

A canonical example of this split-apply-combine operation, where the "apply" is a summation

aggregation, is illustrated in this figure:

figure source in Appendix

This makes clear what the groupby accomplishes:

 The split step involves breaking up and grouping a DataFrame depending on the value of
the specified key.

 The apply step involves computing some function, usually an aggregate, transformation, or
filtering, within the individual groups.

 The combine step merges the results of these operations into an output array.

While this could certainly be done manually using some combination of the masking,

aggregation, and merging commands covered earlier, an important realization is that the

intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can (often)

do this in a single pass over the data, updating the sum, mean, count, min, or other aggregate

for each group along the way. The power of the GroupBy is that it abstracts away these steps:

the user need not think about how the computation is done under the hood, but rather thinks

about the operation as a whole.

As a concrete example, let's take a look at using Pandas for the computation shown in this

diagram. We'll start by creating the input DataFrame:

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

 'data': range(6)}, columns=['key', 'data'])

df

key data

0 A 0

1 B 1

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Split-Apply-Combine

key data

2 C 2

3 A 3

4 B 4

5 C 5

The most basic split-apply-combine operation can be computed with the groupby() method

of DataFrames, passing the name of the desired key column:

df.groupby('key')

<pandas.core.groupby.DataFrameGroupBy object at 0x117272160>

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object. This

object is where the magic is: you can think of it as a special view of the DataFrame, which is

poised to dig into the groups but does no actual computation until the aggregation is applied.

This "lazy evaluation" approach means that common aggregates can be implemented very

efficiently in a way that is almost transparent to the user.

To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which will

perform the appropriate apply/combine steps to produce the desired result:

df.groupby('key').sum()

data

key

A 3

B 5

C 7

The sum() method is just one possibility here; you can apply virtually any common Pandas

or NumPy aggregation function, as well as virtually any valid DataFrame operation, as we

will see in the following discussion.

The GroupBy object

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if

it's a collection of DataFrames, and it does the difficult things under the hood. Let's see some

examples using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate, filter,

transform, and apply. We'll discuss each of these more fully in "Aggregate, Filter, Transform,

Apply", but before that let's introduce some of the other functionality that can be used with

the basic GroupBy operation.

Column indexing

The GroupBy object supports column indexing in the same way as the DataFrame, and

returns a modified GroupBy object. For example:

planets.groupby('method')

<pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8>

planets.groupby('method')['orbital_period']

<pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we've selected a particular Series group from the original DataFrame group by

reference to its column name. As with the GroupBy object, no computation is done until we

call some aggregate on the object:

planets.groupby('method')['orbital_period'].median()

method

Astrometry 631.180000

Eclipse Timing Variations 4343.500000

Imaging 27500.000000

Microlensing 3300.000000

Orbital Brightness Modulation 0.342887

Pulsar Timing 66.541900

Pulsation Timing Variations 1170.000000

Radial Velocity 360.200000

Transit 5.714932

Transit Timing Variations 57.011000

Name: orbital_period, dtype: float64

This gives an idea of the general scale of orbital periods (in days) that each method is

sensitive to.

Iteration over groups

The GroupBy object supports direct iteration over the groups, returning each group as a

Series or DataFrame:

for (method, group) in planets.groupby('method'):

 print("{0:30s} shape={1}".format(method, group.shape))

Astrometry shape=(2, 6)

Eclipse Timing Variations shape=(9, 6)

Imaging shape=(38, 6)

Microlensing shape=(23, 6)

Orbital Brightness Modulation shape=(3, 6)

Pulsar Timing shape=(5, 6)

Pulsation Timing Variations shape=(1, 6)

Radial Velocity shape=(553, 6)

Transit shape=(397, 6)

Transit Timing Variations shape=(4, 6)

https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html#Aggregate,-Filter,-Transform,-Apply
https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html#Aggregate,-Filter,-Transform,-Apply

This can be useful for doing certain things manually, though it is often much faster to use the

built-in apply functionality, which we will discuss momentarily.

Dispatch methods

Through some Python class magic, any method not explicitly implemented by the GroupBy

object will be passed through and called on the groups, whether they are DataFrame or

Series objects. For example, you can use the describe() method of DataFrames to perform

a set of aggregations that describe each group in the data:

planets.groupby('method')['year'].describe().unstack()

count mean std min 25% 50% 75% max

method

Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75 2011.5 2012.25 2013.0

Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00 2010.0 2011.00 2012.0

Imaging 38.0 2009.131579 2.781901 2004.0 2008.00 2009.0 2011.00 2013.0

Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00 2010.0 2012.00 2013.0

Orbital Brightness

Modulation
3.0 2011.666667 1.154701 2011.0 2011.00 2011.0 2012.00 2013.0

Pulsar Timing 5.0 1998.400000 8.384510 1992.0 1992.00 1994.0 2003.00 2011.0

Pulsation Timing

Variations
1.0 2007.000000 NaN 2007.0 2007.00 2007.0 2007.00 2007.0

Radial Velocity 553.0 2007.518987 4.249052 1989.0 2005.00 2009.0 2011.00 2014.0

Transit 397.0 2011.236776 2.077867 2002.0 2010.00 2012.0 2013.00 2014.0

Transit Timing Variations 4.0 2012.500000 1.290994 2011.0 2011.75 2012.5 2013.25 2014.0

Looking at this table helps us to better understand the data: for example, the vast majority of

planets have been discovered by the Radial Velocity and Transit methods, though the latter

only became common (due to new, more accurate telescopes) in the last decade. The newest

methods seem to be Transit Timing Variation and Orbital Brightness Modulation, which were

not used to discover a new planet until 2011.

This is just one example of the utility of dispatch methods. Notice that they are applied to

each individual group, and the results are then combined within GroupBy and returned.

Again, any valid DataFrame/Series method can be used on the corresponding GroupBy

object, which allows for some very flexible and powerful operations!

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but there are

more options available. In particular, GroupBy objects have aggregate(), filter(),

transform(), and apply() methods that efficiently implement a variety of useful operations

before combining the grouped data.

For the purpose of the following subsections, we'll use this DataFrame:

rng = np.random.RandomState(0)

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

 'data1': range(6),

 'data2': rng.randint(0, 10, 6)},

 columns = ['key', 'data1', 'data2'])

df

key data1 data2

0 A 0 5

1 B 1 0

2 C 2 3

3 A 3 3

4 B 4 7

5 C 5 9

Aggregation

We're now familiar with GroupBy aggregations with sum(), median(), and the like, but the

aggregate() method allows for even more flexibility. It can take a string, a function, or a list

thereof, and compute all the aggregates at once. Here is a quick example combining all these:

df.groupby('key').aggregate(['min', np.median, max])

data1 data2

min median max min median max

key

A 0 1.5 3 3 4.0 5

data1 data2

min median max min median max

key

B 1 2.5 4 0 3.5 7

C 2 3.5 5 3 6.0 9

Another useful pattern is to pass a dictionary mapping column names to operations to be

applied on that column:

df.groupby('key').aggregate({'data1': 'min',

 'data2': 'max'})

data1 data2

key

A 0 5

B 1 7

C 2 9

Filtering

A filtering operation allows you to drop data based on the group properties. For example, we

might want to keep all groups in which the standard deviation is larger than some critical

value:

def filter_func(x):

 return x['data2'].std() > 4

display('df', "df.groupby('key').std()",

"df.groupby('key').filter(filter_func)")

df

key data1 data2

0 A 0 5

1 B 1 0

key data1 data2

2 C 2 3

3 A 3 3

4 B 4 7

5 C 5 9

df.groupby('key').std()

data1 data2

key

A 2.12132 1.414214

B 2.12132 4.949747

C 2.12132 4.242641

df.groupby('key').filter(filter_func)

key data1 data2

1 B 1 0

2 C 2 3

4 B 4 7

5 C 5 9

The filter function should return a Boolean value specifying whether the group passes the

filtering. Here because group A does not have a standard deviation greater than 4, it is

dropped from the result.

Transformation

While aggregation must return a reduced version of the data, transformation can return some

transformed version of the full data to recombine. For such a transformation, the output is the

same shape as the input. A common example is to center the data by subtracting the group-

wise mean:

df.groupby('key').transform(lambda x: x - x.mean())

data1 data2

0 -1.5 1.0

1 -1.5 -3.5

2 -1.5 -3.0

3 1.5 -1.0

4 1.5 3.5

5 1.5 3.0

The apply() method

The apply() method lets you apply an arbitrary function to the group results. The function

should take a DataFrame, and return either a Pandas object (e.g., DataFrame, Series) or a

scalar; the combine operation will be tailored to the type of output returned.

For example, here is an apply() that normalizes the first column by the sum of the second:

def norm_by_data2(x):

 # x is a DataFrame of group values

 x['data1'] /= x['data2'].sum()

 return x

display('df', "df.groupby('key').apply(norm_by_data2)")

df

key data1 data2

0 A 0 5

1 B 1 0

2 C 2 3

3 A 3 3

4 B 4 7

5 C 5 9

df.groupby('key').apply(norm_by_data2)

key data1 data2

0 A 0.000000 5

1 B 0.142857 0

2 C 0.166667 3

3 A 0.375000 3

4 B 0.571429 7

5 C 0.416667 9

apply() within a GroupBy is quite flexible: the only criterion is that the function takes a

DataFrame and returns a Pandas object or scalar; what you do in the middle is up to you!

Specifying the split key

In the simple examples presented before, we split the DataFrame on a single column name.

This is just one of many options by which the groups can be defined, and we'll go through

some other options for group specification here.

A list, array, series, or index providing the grouping keys

The key can be any series or list with a length matching that of the DataFrame. For example:

L = [0, 1, 0, 1, 2, 0]

display('df', 'df.groupby(L).sum()')

df

key data1 data2

0 A 0 5

1 B 1 0

2 C 2 3

3 A 3 3

4 B 4 7

5 C 5 9

df.groupby(L).sum()

data1 data2

0 7 17

1 4 3

2 4 7

Of course, this means there's another, more verbose way of accomplishing the

df.groupby('key') from before:

display('df', "df.groupby(df['key']).sum()")

df

key data1 data2

0 A 0 5

1 B 1 0

2 C 2 3

3 A 3 3

4 B 4 7

5 C 5 9

df.groupby(df['key']).sum()

data1 data2

key

A 3 8

B 5 7

C 7 12

A dictionary or series mapping index to group

Another method is to provide a dictionary that maps index values to the group keys:

df2 = df.set_index('key')

mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}

display('df2', 'df2.groupby(mapping).sum()')

df2

data1 data2

key

A 0 5

B 1 0

C 2 3

A 3 3

B 4 7

C 5 9

df2.groupby(mapping).sum()

data1 data2

consonant 12 19

vowel 3 8

Any Python function

Similar to mapping, you can pass any Python function that will input the index value and

output the group:

display('df2', 'df2.groupby(str.lower).mean()')

df2

data1 data2

key

A 0 5

B 1 0

C 2 3

A 3 3

B 4 7

C 5 9

df2.groupby(str.lower).mean()

data1 data2

a 1.5 4.0

b 2.5 3.5

c 3.5 6.0

A list of valid keys

Further, any of the preceding key choices can be combined to group on a multi-index:

df2.groupby([str.lower, mapping]).mean()

data1 data2

a vowel 1.5 4.0

b consonant 2.5 3.5

c consonant 3.5 6.0

Grouping example

As an example of this, in a couple lines of Python code we can put all these together and

count discovered planets by method and by decade:

decade = 10 * (planets['year'] // 10)

decade = decade.astype(str) + 's'

decade.name = 'decade'

planets.groupby(['method', decade])['number'].sum().unstack().fillna(0)

decade 1980s 1990s 2000s 2010s

method

Astrometry 0.0 0.0 0.0 2.0

Eclipse Timing Variations 0.0 0.0 5.0 10.0

Imaging 0.0 0.0 29.0 21.0

Microlensing 0.0 0.0 12.0 15.0

Orbital Brightness Modulation 0.0 0.0 0.0 5.0

Pulsar Timing 0.0 9.0 1.0 1.0

Pulsation Timing Variations 0.0 0.0 1.0 0.0

Radial Velocity 1.0 52.0 475.0 424.0

Transit 0.0 0.0 64.0 712.0

Transit Timing Variations 0.0 0.0 0.0 9.0

	Aggregation in DBMS
	Reasons for using aggregation in DBMS
	Process flow for aggregation in DBMS
	Example of aggregation in DBMS
	Planets Data
	Simple Aggregation in Pandas
	GroupBy: Split, Apply, Combine
	Split, apply, combine
	The GroupBy object
	Column indexing
	Iteration over groups
	Dispatch methods

	Aggregate, filter, transform, apply
	Aggregation
	Filtering
	Transformation
	The apply() method

	Specifying the split key
	A list, array, series, or index providing the grouping keys
	A dictionary or series mapping index to group
	Any Python function
	A list of valid keys

	Grouping example

