
AGGREGATION  

Aggregation is the process of combining or grouping data together into a set, bag, or list. The data 

may or may not be alike. However, in most cases, an aggregation function combines several rows 

together statistically using algorithms such as average, count, maximum, median, minimum, mode, 

or sum. 

Aggregation IN DBMS 

In aggregation, the relation between two entities is treated as a single entity. ... For example: Center 

entity offers the Course entity act as a single entity in the relationship which is in a relationship with 

another entity visitor. 

DBMS is advantageous over the file system because it reduces data redundancy (through 

database normalization) and enhances data integrity. It also offers flexibility, privacy, and 

data security. 

A DBMS consists of entities whose data can be stored. They can be people, things, objects, or 

places. Two or more entities are joined through a relationship, that is simply a way of 

connecting data sets. Some entities in a DBMS may have little value, which makes it difficult 

to use them for certain operations. 

In such situations, we can combine these entities with other entities to form a complex one 

that makes sense. We can do this operation through a process called aggregation. 

Aggregation in DBMS links trivial entities through relationships to ensure that the entire 

system functions well. 

Aggregation in DBMS 

Aggregation refers to the process by which entities are combined to form a single meaningful 

entity. The specific entities are combined because they do not make sense on their own. To 

establish a single entity, aggregation creates a relationship that combines these entities. The 

resulting entity makes sense because it enables the system to function well. 

When using data in the form of numerical values, the following operations can be used to 

perform DBMS aggregation: 

 Average (AVG): This function provides the mean or average of the data values. 

 Sum: This provides a total value after the data values have been added. 

 Count: This provides the number of records. 

 Maximum (Max): This function provides the maximum value of a given set of data. 

 Minimum (Min): This provides the minimum value of a given set of data. 

 Standard deviation (std dev): This provides the dispersion or variation of the sets of 

data. Let’s take a simple example of a database of student marks. If the standard 

deviation is high, it means the average is obtained by lower number of students than 

usual, and the lowest and highest marks are higher. 

 

https://en.wikipedia.org/wiki/Data_redundancy
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Data_integrity


 Reasons for using aggregation in DBMS 

Aggregation is used when the DBMS has the following characteristics. 

 Many trivial entities: A DBMS may consist of many entities that are not significant 

enough to provide meaningful information. In such a case, the trivial entities can be 

combined into one complex entity through aggregation. For example, many trivial 

entities called rooms can be combined to form a single entity called hotel. 

 One trivial entity: Aggregation is also needed if a DBMS has a single trivial entity 

that should be used for multiple operations. In this case, the trivial entity is used to 

form relationships with other entities. This may lead to many aggregation entities 

depending on the operations required. For example, an employee in an organization 

may be given an insurance policy that covers his dependants. The entity dependants is 

a trivial entity because it cannot exist without the entity employee. 

 Inapplicable entity-model relationship: The entity-model relationship cannot be 

applied to certain entities within the system. These specific entities can be combined 

with other entities to allow the application of the entity-model relationship in the 

entire system. This ensures that all the entities in the system are utilized. For example, 

the entity-model relationship for students can only be applied if students enroll in a 

class. The entity grade can only be formed if the relationship enroll exists. 

Process flow for aggregation in DBMS 

Aggregation in DBMS can be explained using the entity-relationship model (ER model). This 

is a conceptual diagram that represents the structure of a database and its components. It 

contains the relationships, attributes, and entities in a DBMS. This is similar to the columns, 

rows, and tables in a database. 

The following are the main types of relationships in an ER model: 

 One-to-one: Here, the trivial entity forms a relationship with only one other entity. 

For example, one employee can work in only one department of an organization. 

 One-to-many: In this relationship, one entity forms a relationship with multiple 

entities. For example, an employee can work in multiple departments within the same 

organization. 

 Many-to-one: Here, multiple entities in a certain entity set can form a relationship 

with only one entity. For example, many employees can work in only one department. 

 Many-to-many: In this category, multiple entities from a certain entity set, that can 

form a relationship with many entities from another entity set. For example, many 

employees can work in multiple departments within the same organization. 

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm


The following diagram shows a simple ER model that can be used to explain the process flow 

for aggregation in DBMS.  

 

In this ER model, A, B, and C represent entities. A and B should be combined into a single 

complex entity. R1 is the relationship that is formed after A and B are linked. R1 needs to 

form a relationship with other entities for other DBMS operations to be successful. 

This operation generates a new relationship (R2). R2 is linked to another entity C to enhance 

its functionality. This entity is also formed through aggregation. 

Example of aggregation in DBMS 

Let’s assume that there is a patient who has visited a doctor in the hospital to seek treatment 

for a certain type of illness. The following diagram shows the process flow for aggregation in 

the hospital. 

 

Image Source: EDUCBA 

We will follow the simple ER model described above. In the diagram above, there are three 

entities: patient history, the doctor, and the patient. Filing and diagnosis represent 

relationships. The doctor performs a diagnosis on the patient. 

The database stores data regarding this diagnosis and any other patient data. Filing is required 

to make it easier for the doctor to retrieve the patient’s information in the future. 

In this example, the patient cannot work on his own. He has to form a relationship with the 

doctor to get a diagnosis. The doctor also cannot perform a diagnosis without the patient. In 

https://cdn.educba.com/academy/wp-content/uploads/2020/03/aggregation-in-dbms0.jpg


the future, the doctor will need data about the patient’s history, that will require him to collect 

it from a filing system. 

The last entity (patient’s history) ensures that the entire system is functional. Getting the 

patient’s history cannot be done without a diagnosis from the doctor and a filing system. 

 

An essential piece of analysis of large data is efficient summarization: computing 

aggregations like sum(), mean(), median(), min(), and max(), in which a single number 

gives insight into the nature of a potentially large dataset. In this section, we'll explore 

aggregations in Pandas, from simple operations akin to what we've seen on NumPy arrays, to 

more sophisticated operations based on the concept of a groupby. 

For convenience, we'll use the same display magic function that we've seen in previous 

sections: 

import numpy as np 

import pandas as pd 

 

class display(object): 

    """Display HTML representation of multiple objects""" 

    template = """<div style="float: left; padding: 10px;"> 

    <p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1} 

    </div>""" 

    def __init__(self, *args): 

        self.args = args 

         

    def _repr_html_(self): 

        return '\n'.join(self.template.format(a, eval(a)._repr_html_()) 

                         for a in self.args) 

     

    def __repr__(self): 

        return '\n\n'.join(a + '\n' + repr(eval(a)) 

                           for a in self.args) 

Planets Data 

Here we will use the Planets dataset, available via the Seaborn package (see Visualization 

With Seaborn). It gives information on planets that astronomers have discovered around other 

stars (known as extrasolar planets or exoplanets for short). It can be downloaded with a 

simple Seaborn command: 

import seaborn as sns 

planets = sns.load_dataset('planets') 

planets.shape 

(1035, 6) 

planets.head() 

 
method number orbital_period mass distance year 

0 Radial Velocity 1 269.300 7.10 77.40 2006 

http://seaborn.pydata.org/
https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html


 
method number orbital_period mass distance year 

1 Radial Velocity 1 874.774 2.21 56.95 2008 

2 Radial Velocity 1 763.000 2.60 19.84 2011 

3 Radial Velocity 1 326.030 19.40 110.62 2007 

4 Radial Velocity 1 516.220 10.50 119.47 2009 

This has some details on the 1,000+ extrasolar planets discovered up to 2014. 

Simple Aggregation in Pandas 

Earlier, we explored some of the data aggregations available for NumPy arrays 

("Aggregations: Min, Max, and Everything In Between"). As with a one-dimensional NumPy 

array, for a Pandas Series the aggregates return a single value: 

rng = np.random.RandomState(42) 

ser = pd.Series(rng.rand(5)) 

ser 

0    0.374540 

1    0.950714 

2    0.731994 

3    0.598658 

4    0.156019 

dtype: float64 

ser.sum() 

2.8119254917081569 

ser.mean() 

0.56238509834163142 

For a DataFrame, by default the aggregates return results within each column: 

df = pd.DataFrame({'A': rng.rand(5), 

                   'B': rng.rand(5)}) 

df 

 
A B 

0 0.155995 0.020584 

1 0.058084 0.969910 

2 0.866176 0.832443 

3 0.601115 0.212339 

4 0.708073 0.181825 

https://jakevdp.github.io/PythonDataScienceHandbook/02.04-computation-on-arrays-aggregates.html


df.mean() 

A    0.477888 

B    0.443420 

dtype: float64 

By specifying the axis argument, you can instead aggregate within each row: 

df.mean(axis='columns') 

0    0.088290 

1    0.513997 

2    0.849309 

3    0.406727 

4    0.444949 

dtype: float64 

Pandas Series and DataFrames include all of the common aggregates mentioned in 

Aggregations: Min, Max, and Everything In Between; in addition, there is a convenience 

method describe() that computes several common aggregates for each column and returns 

the result. Let's use this on the Planets data, for now dropping rows with missing values: 

planets.dropna().describe() 

 
number orbital_period mass distance year 

count 498.00000 498.000000 498.000000 498.000000 498.000000 

mean 1.73494 835.778671 2.509320 52.068213 2007.377510 

std 1.17572 1469.128259 3.636274 46.596041 4.167284 

min 1.00000 1.328300 0.003600 1.350000 1989.000000 

25% 1.00000 38.272250 0.212500 24.497500 2005.000000 

50% 1.00000 357.000000 1.245000 39.940000 2009.000000 

75% 2.00000 999.600000 2.867500 59.332500 2011.000000 

max 6.00000 17337.500000 25.000000 354.000000 2014.000000 

This can be a useful way to begin understanding the overall properties of a dataset. For 

example, we see in the year column that although exoplanets were discovered as far back as 

1989, half of all known expolanets were not discovered until 2010 or after. This is largely 

thanks to the Kepler mission, which is a space-based telescope specifically designed for 

finding eclipsing planets around other stars. 

The following table summarizes some other built-in Pandas aggregations: 

Aggregation Description 

https://jakevdp.github.io/PythonDataScienceHandbook/02.04-computation-on-arrays-aggregates.html


Aggregation Description 

count() Total number of items 

first(), last() First and last item 

mean(), median() Mean and median 

min(), max() Minimum and maximum 

std(), var() Standard deviation and variance 

mad() Mean absolute deviation 

prod() Product of all items 

sum() Sum of all items 

These are all methods of DataFrame and Series objects. 

To go deeper into the data, however, simple aggregates are often not enough. The next level 

of data summarization is the groupby operation, which allows you to quickly and efficiently 

compute aggregates on subsets of data. 

GroupBy: Split, Apply, Combine 

Simple aggregations can give you a flavor of your dataset, but often we would prefer to 

aggregate conditionally on some label or index: this is implemented in the so-called groupby 

operation. The name "group by" comes from a command in the SQL database language, but it 

is perhaps more illuminative to think of it in the terms first coined by Hadley Wickham of 

Rstats fame: split, apply, combine. 

Split, apply, combine 

A canonical example of this split-apply-combine operation, where the "apply" is a summation 

aggregation, is illustrated in this figure: 



 

figure source in Appendix 

This makes clear what the groupby accomplishes: 

 The split step involves breaking up and grouping a DataFrame depending on the value of 
the specified key. 

 The apply step involves computing some function, usually an aggregate, transformation, or 
filtering, within the individual groups. 

 The combine step merges the results of these operations into an output array. 

While this could certainly be done manually using some combination of the masking, 

aggregation, and merging commands covered earlier, an important realization is that the 

intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can (often) 

do this in a single pass over the data, updating the sum, mean, count, min, or other aggregate 

for each group along the way. The power of the GroupBy is that it abstracts away these steps: 

the user need not think about how the computation is done under the hood, but rather thinks 

about the operation as a whole. 

As a concrete example, let's take a look at using Pandas for the computation shown in this 

diagram. We'll start by creating the input DataFrame: 

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 

                   'data': range(6)}, columns=['key', 'data']) 

df 

 
key data 

0 A 0 

1 B 1 

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Split-Apply-Combine


 
key data 

2 C 2 

3 A 3 

4 B 4 

5 C 5 

The most basic split-apply-combine operation can be computed with the groupby() method 

of DataFrames, passing the name of the desired key column: 

df.groupby('key') 

<pandas.core.groupby.DataFrameGroupBy object at 0x117272160> 

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object. This 

object is where the magic is: you can think of it as a special view of the DataFrame, which is 

poised to dig into the groups but does no actual computation until the aggregation is applied. 

This "lazy evaluation" approach means that common aggregates can be implemented very 

efficiently in a way that is almost transparent to the user. 

To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which will 

perform the appropriate apply/combine steps to produce the desired result: 

df.groupby('key').sum() 

 
data 

key 
 

A 3 

B 5 

C 7 

The sum() method is just one possibility here; you can apply virtually any common Pandas 

or NumPy aggregation function, as well as virtually any valid DataFrame operation, as we 

will see in the following discussion. 

The GroupBy object 

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if 

it's a collection of DataFrames, and it does the difficult things under the hood. Let's see some 

examples using the Planets data. 



Perhaps the most important operations made available by a GroupBy are aggregate, filter, 

transform, and apply. We'll discuss each of these more fully in "Aggregate, Filter, Transform, 

Apply", but before that let's introduce some of the other functionality that can be used with 

the basic GroupBy operation. 

Column indexing 

The GroupBy object supports column indexing in the same way as the DataFrame, and 

returns a modified GroupBy object. For example: 

planets.groupby('method') 

<pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8> 

planets.groupby('method')['orbital_period'] 

<pandas.core.groupby.SeriesGroupBy object at 0x117272da0> 

Here we've selected a particular Series group from the original DataFrame group by 

reference to its column name. As with the GroupBy object, no computation is done until we 

call some aggregate on the object: 

planets.groupby('method')['orbital_period'].median() 

method 

Astrometry                         631.180000 

Eclipse Timing Variations         4343.500000 

Imaging                          27500.000000 

Microlensing                      3300.000000 

Orbital Brightness Modulation        0.342887 

Pulsar Timing                       66.541900 

Pulsation Timing Variations       1170.000000 

Radial Velocity                    360.200000 

Transit                              5.714932 

Transit Timing Variations           57.011000 

Name: orbital_period, dtype: float64 

This gives an idea of the general scale of orbital periods (in days) that each method is 

sensitive to. 

Iteration over groups 

The GroupBy object supports direct iteration over the groups, returning each group as a 

Series or DataFrame: 

for (method, group) in planets.groupby('method'): 

    print("{0:30s} shape={1}".format(method, group.shape)) 

Astrometry                     shape=(2, 6) 

Eclipse Timing Variations      shape=(9, 6) 

Imaging                        shape=(38, 6) 

Microlensing                   shape=(23, 6) 

Orbital Brightness Modulation  shape=(3, 6) 

Pulsar Timing                  shape=(5, 6) 

Pulsation Timing Variations    shape=(1, 6) 

Radial Velocity                shape=(553, 6) 

Transit                        shape=(397, 6) 

Transit Timing Variations      shape=(4, 6) 

https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html#Aggregate,-Filter,-Transform,-Apply
https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html#Aggregate,-Filter,-Transform,-Apply


This can be useful for doing certain things manually, though it is often much faster to use the 

built-in apply functionality, which we will discuss momentarily. 

Dispatch methods 

Through some Python class magic, any method not explicitly implemented by the GroupBy 

object will be passed through and called on the groups, whether they are DataFrame or 

Series objects. For example, you can use the describe() method of DataFrames to perform 

a set of aggregations that describe each group in the data: 

planets.groupby('method')['year'].describe().unstack() 

 
count mean std min 25% 50% 75% max 

method 
        

Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75 2011.5 2012.25 2013.0 

Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00 2010.0 2011.00 2012.0 

Imaging 38.0 2009.131579 2.781901 2004.0 2008.00 2009.0 2011.00 2013.0 

Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00 2010.0 2012.00 2013.0 

Orbital Brightness 

Modulation 
3.0 2011.666667 1.154701 2011.0 2011.00 2011.0 2012.00 2013.0 

Pulsar Timing 5.0 1998.400000 8.384510 1992.0 1992.00 1994.0 2003.00 2011.0 

Pulsation Timing 

Variations 
1.0 2007.000000 NaN 2007.0 2007.00 2007.0 2007.00 2007.0 

Radial Velocity 553.0 2007.518987 4.249052 1989.0 2005.00 2009.0 2011.00 2014.0 

Transit 397.0 2011.236776 2.077867 2002.0 2010.00 2012.0 2013.00 2014.0 

Transit Timing Variations 4.0 2012.500000 1.290994 2011.0 2011.75 2012.5 2013.25 2014.0 

Looking at this table helps us to better understand the data: for example, the vast majority of 

planets have been discovered by the Radial Velocity and Transit methods, though the latter 

only became common (due to new, more accurate telescopes) in the last decade. The newest 

methods seem to be Transit Timing Variation and Orbital Brightness Modulation, which were 

not used to discover a new planet until 2011. 

This is just one example of the utility of dispatch methods. Notice that they are applied to 

each individual group, and the results are then combined within GroupBy and returned. 



Again, any valid DataFrame/Series method can be used on the corresponding GroupBy 

object, which allows for some very flexible and powerful operations! 

Aggregate, filter, transform, apply 

The preceding discussion focused on aggregation for the combine operation, but there are 

more options available. In particular, GroupBy objects have aggregate(), filter(), 

transform(), and apply() methods that efficiently implement a variety of useful operations 

before combining the grouped data. 

For the purpose of the following subsections, we'll use this DataFrame: 

rng = np.random.RandomState(0) 

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 

                   'data1': range(6), 

                   'data2': rng.randint(0, 10, 6)}, 

                   columns = ['key', 'data1', 'data2']) 

df 

 
key data1 data2 

0 A 0 5 

1 B 1 0 

2 C 2 3 

3 A 3 3 

4 B 4 7 

5 C 5 9 

Aggregation 

We're now familiar with GroupBy aggregations with sum(), median(), and the like, but the 

aggregate() method allows for even more flexibility. It can take a string, a function, or a list 

thereof, and compute all the aggregates at once. Here is a quick example combining all these: 

df.groupby('key').aggregate(['min', np.median, max]) 

 
data1 data2 

 
min median max min median max 

key 
      

A 0 1.5 3 3 4.0 5 



 
data1 data2 

 
min median max min median max 

key 
      

B 1 2.5 4 0 3.5 7 

C 2 3.5 5 3 6.0 9 

Another useful pattern is to pass a dictionary mapping column names to operations to be 

applied on that column: 

df.groupby('key').aggregate({'data1': 'min', 

                             'data2': 'max'}) 

 
data1 data2 

key 
  

A 0 5 

B 1 7 

C 2 9 

Filtering 

A filtering operation allows you to drop data based on the group properties. For example, we 

might want to keep all groups in which the standard deviation is larger than some critical 

value: 

def filter_func(x): 

    return x['data2'].std() > 4 

 

display('df', "df.groupby('key').std()", 

"df.groupby('key').filter(filter_func)") 

df 

 
key data1 data2 

0 A 0 5 

1 B 1 0 



 
key data1 data2 

2 C 2 3 

3 A 3 3 

4 B 4 7 

5 C 5 9 

df.groupby('key').std() 

 
data1 data2 

key 
  

A 2.12132 1.414214 

B 2.12132 4.949747 

C 2.12132 4.242641 

df.groupby('key').filter(filter_func) 

 
key data1 data2 

1 B 1 0 

2 C 2 3 

4 B 4 7 

5 C 5 9 

The filter function should return a Boolean value specifying whether the group passes the 

filtering. Here because group A does not have a standard deviation greater than 4, it is 

dropped from the result. 

Transformation 

While aggregation must return a reduced version of the data, transformation can return some 

transformed version of the full data to recombine. For such a transformation, the output is the 

same shape as the input. A common example is to center the data by subtracting the group-

wise mean: 



df.groupby('key').transform(lambda x: x - x.mean()) 

 
data1 data2 

0 -1.5 1.0 

1 -1.5 -3.5 

2 -1.5 -3.0 

3 1.5 -1.0 

4 1.5 3.5 

5 1.5 3.0 

The apply() method 

The apply() method lets you apply an arbitrary function to the group results. The function 

should take a DataFrame, and return either a Pandas object (e.g., DataFrame, Series) or a 

scalar; the combine operation will be tailored to the type of output returned. 

For example, here is an apply() that normalizes the first column by the sum of the second: 

def norm_by_data2(x): 

    # x is a DataFrame of group values 

    x['data1'] /= x['data2'].sum() 

    return x 

 

display('df', "df.groupby('key').apply(norm_by_data2)") 

df 

 
key data1 data2 

0 A 0 5 

1 B 1 0 

2 C 2 3 

3 A 3 3 

4 B 4 7 

5 C 5 9 

df.groupby('key').apply(norm_by_data2) 



 
key data1 data2 

0 A 0.000000 5 

1 B 0.142857 0 

2 C 0.166667 3 

3 A 0.375000 3 

4 B 0.571429 7 

5 C 0.416667 9 

apply() within a GroupBy is quite flexible: the only criterion is that the function takes a 

DataFrame and returns a Pandas object or scalar; what you do in the middle is up to you! 

Specifying the split key 

In the simple examples presented before, we split the DataFrame on a single column name. 

This is just one of many options by which the groups can be defined, and we'll go through 

some other options for group specification here. 

A list, array, series, or index providing the grouping keys 

The key can be any series or list with a length matching that of the DataFrame. For example: 

L = [0, 1, 0, 1, 2, 0] 

display('df', 'df.groupby(L).sum()') 

df 

 
key data1 data2 

0 A 0 5 

1 B 1 0 

2 C 2 3 

3 A 3 3 

4 B 4 7 

5 C 5 9 



df.groupby(L).sum() 

 
data1 data2 

0 7 17 

1 4 3 

2 4 7 

Of course, this means there's another, more verbose way of accomplishing the 

df.groupby('key') from before: 

display('df', "df.groupby(df['key']).sum()") 

df 

 
key data1 data2 

0 A 0 5 

1 B 1 0 

2 C 2 3 

3 A 3 3 

4 B 4 7 

5 C 5 9 

df.groupby(df['key']).sum() 

 
data1 data2 

key 
  

A 3 8 

B 5 7 

C 7 12 



A dictionary or series mapping index to group 

Another method is to provide a dictionary that maps index values to the group keys: 

df2 = df.set_index('key') 

mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'} 

display('df2', 'df2.groupby(mapping).sum()') 

df2 

 
data1 data2 

key 
  

A 0 5 

B 1 0 

C 2 3 

A 3 3 

B 4 7 

C 5 9 

df2.groupby(mapping).sum() 

 
data1 data2 

consonant 12 19 

vowel 3 8 

Any Python function 

Similar to mapping, you can pass any Python function that will input the index value and 

output the group: 

display('df2', 'df2.groupby(str.lower).mean()') 

df2 

 
data1 data2 



key 
  

A 0 5 

B 1 0 

C 2 3 

A 3 3 

B 4 7 

C 5 9 

df2.groupby(str.lower).mean() 

 
data1 data2 

a 1.5 4.0 

b 2.5 3.5 

c 3.5 6.0 

A list of valid keys 

Further, any of the preceding key choices can be combined to group on a multi-index: 

df2.groupby([str.lower, mapping]).mean() 

  
data1 data2 

a vowel 1.5 4.0 

b consonant 2.5 3.5 

c consonant 3.5 6.0 

Grouping example 

As an example of this, in a couple lines of Python code we can put all these together and 

count discovered planets by method and by decade: 

decade = 10 * (planets['year'] // 10) 

decade = decade.astype(str) + 's' 

decade.name = 'decade' 



planets.groupby(['method', decade])['number'].sum().unstack().fillna(0) 

decade 1980s 1990s 2000s 2010s 

method 
    

Astrometry 0.0 0.0 0.0 2.0 

Eclipse Timing Variations 0.0 0.0 5.0 10.0 

Imaging 0.0 0.0 29.0 21.0 

Microlensing 0.0 0.0 12.0 15.0 

Orbital Brightness Modulation 0.0 0.0 0.0 5.0 

Pulsar Timing 0.0 9.0 1.0 1.0 

Pulsation Timing Variations 0.0 0.0 1.0 0.0 

Radial Velocity 1.0 52.0 475.0 424.0 

Transit 0.0 0.0 64.0 712.0 

Transit Timing Variations 0.0 0.0 0.0 9.0 
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